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1. Introduction

The concept of fuzzy sets and fuzzy set operations were first introduced by Zadeh [17].
Subsequently, several authors have applied various basic concepts from general topology to fuzzy
sets and developed the theory of fuzzy topological spaces. Fuzzy topology was introduced by
Chang [6]. Azad [1]] introduced fuzzy semi continuity in 1981. Balasubramanian and Sundaram
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[2] introduced generalized fuzzy continuous functions in 1997 and Thakur and Singh [14]
introduced fuzzy semi pre continuity in 1998. Gnanambal and Balachandran [9] introduced the
concept of gpr-continuous functions in 1999. In 2010, Govindappa Navalagi et al. [8] defined the
concept of generalized semi preregular closed sets and also introduced the notion of generalized
semi preregular continuity and studied their properties. In 2011, Benchalli and Karnel [4]
explained the concept of fuzzy gb-continuous maps and investigated their properties. In 2012,
Balasubramanian and Lakshmi Sarada [3] defined the concept of gpr-closed and gpr-open
mappings and studied their properties. In 2013, Vadivel et al. [15] explained the concept of
fuzzy generalized preregular continuous mappings and investigated their properties. In 2016,
Madabhavi and Patil [10] introduced fuzzyg-u-closed maps, fuzzy g-u-continuous maps and
studied their properties.

In this paper, fgspr-closed mappings, fgspr-open mappings, fgspr™*-closed mappings and
fgspr*-open mappings are introduced and some of their properties are studied.

2. Preliminaries

Let X, Y and Z be fuzzy sets. Throughout this paper, (X,1), (Y,0) and (Z,n) (or simply X,
Y and Z) mean fuzzy topological spaces on which no separation axioms are assumed unless
explicitly stated. Let f : (X,7) — (Y,0) be mapping from a fuzzy topological space X to fuzzy
topological space Y. Let us recall the following definitions which we shall require later.

Definition 1. A fuzzy set A in a fuzzy topological space (X, 1) is called

(1) a fuzzy preopen set [5] if A <in#(cl(1)) and a fuzzy preclosed set if cl(int(1)) < A.

(i1) a fuzzy semi-preopen set [14] if A < cl(int(cl(1))) and a fuzzy semi-preclosed set if
int(cl(int(1))) < A.

(iii) a fuzzy regular open set [1] if int(cl(1)) = A and a fuzzy regular closed set if cl(int((1)) = A.

Definition 2. A fuzzy set A in a fuzzy topological space (X, 1) is called
(i) a fuzzy generalized closed set (briefly, fg-closed) [2] if cl(1) < u, whenever A < u and u is a
fuzzy open set in X.

(i) a fuzzy generalized pre closed set (briefly, fgp-closed) [[7] if pcl(1) < u, whenever A < u and
i is a fuzzy open set in X.

(iii) a fuzzy generalized semi-pre closed set (briefly, fgsp-closed) [11] if spcl(1) < u, whenever
A < u and pu is a fuzzy open set in X.

(iv) a fuzzy generalized preregular closed set (briefly, fgpr-closed) [15] if pcl(1) < u, whenever
A < p and p is a fuzzy regular open set in X.

(v) a fuzzy generalized semi preregular closed set (briefly, fgspr-closed) [12] if spcl(1) < p,
whenever A < u and u is a fuzzy regular open set in X.
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Definition 3. Let X, Y be two fuzzy topological spaces. A mapping f :(X,7) — (Y,0) is called

(i) a fuzzy generalized continuous (briefly, fg-continuous) [2] if £ ~1(1) is a fuzzy generalized
open (fuzzy generalized closed) set in X, for every fuzzy open (fuzzy closed) set 1 in Y.

(ii) a fuzzy generalized semi preregular continuous (briefly, fgspr-continuous) [13] if £~1(1) is
a fuzzy generalized semi preregular open (fuzzy generalized semi preregular closed) set in
X, for every fuzzy open (fuzzy closed) set A in Y.

(iii) a fuzzy generalized semi preregular irresolute (briefly, fgspr-irresolute) [13] if £ ~1(1) is a
fuzzy generalized semi preregular open (fuzzy generalized semi preregular closed) set in
X, for every fuzzy generalized semi preregular open (fuzzy generalized semi preregular
closed) set 1 in Y.

Definition 4. Let X, Y be two fuzzy topological spaces. A mapping f : (X, 1) — (Y,0) is called
(i) a fuzzy closed mapping (briefly, f-closed) [16] if f(A) is a fuzzy closed set in Y, for every

fuzzy closed set A in X.

(i1) a fuzzy preclosed mapping (briefly, fp-closed) [5] if f(A) is a fuzzy preclosed set in Y, for
every fuzzy closed set A in X.

(iii) a fuzzy sp-closed mapping (briefly, fsp-closed) [14] if f(A) is a fuzzy sp-closed set in Y, for
every fuzzy closed set 1 in X.

(iv) a fuzzy gp-closed mapping (briefly, fgp-closed) [7] if f(A) is a fuzzy gp-closed set in Y, for
every fuzzy closed set 1 in X.

(v) afuzzy gsp-closed mapping (briefly, fgsp-closed) [11] if f(A) is a fuzzy gsp-closed set in
Y, for every fuzzy closed set 1 in X.

(vi) afuzzy gpr-closed mapping (briefly, fgpr-closed) [15] if f(1) is a fuzzy gpr-closed set in
Y, for every fuzzy closed set 1 in X.

The corresponding open mappings are defined in the similar manner.
Definition 5. A fuzzy topological space (X, 1) is said to be

(i) a fuzzy T/ space [2] if every f g-closed is fuzzy closed.

(i1) a fuzzy semi preregular T'1/o space [12] if every fgspr-closed is fuzzy semi preclosed.

*

(iii) a fuzzy semi preregular T/,

space [12] if every fgspr-closed is fuzzy closed.

3. fgspr-Closed Mappings

In this section, some properties of fuzzy generalized semi preregular closed mappings are
studied.

Definition 6. Let X and Y be two fuzzy topological spaces. A mapping f : (X,7) — (Y,0) is said
to be fuzzy generalized semi preregular closed (briefly, fgspr-closed) if the image of every fuzzy
closed set in X is a fgspr-closed setin Y.
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Example 7. Let X = {a,b,c}, Y = {a,b,c} and consider the fuzzy sets 1; = {(a,0.5),(b,0.4),
(c,0.7)}, A2 = {(a,0.8),(b,1),(c,0.4)} and A3 = {(a,0.5),(5,0.6),(c,0.3)}. Let 7 = {0,11,1} and
o ={0,19,1}. Define the mapping f : (X,7) — (Y,0) by f(a) = f(b) =a and f(c) = c. Then
the only fuzzy closed set in X is A3 and f(A3) is a fgspr-closed set in Y. Hence f is a fgspr-closed
map.

Theorem 8. Every f-closed map is a fgspr-closed map.

Proof. Let f:(X,7)— (Y ,0) is a f-closed map. Let A be any fuzzy closed set in X. Then f(A) is
a fuzzy closed setin Y, as f is a f-closed map. Therefore, f(A) is a fgspr-closed set in Y, since
every fuzzy closed set is a fgspr-closed set. Hence f is a fgspr-closed map. O

The following example shows that the converse of the above theorem is not true.

Example 9. Let X = {a,b,c}, Y = {a,b,c} and consider the fuzzy sets 11 = {(a,0.5),(5,0.2),
(c,0.6)}, A2 = {(a,0.7),(b,1),(c,0.5)} and A3 = {(a,0.5),(b,0.8),(c,0.4)}. Let 7 = {0,A1,1} and
o = {0,19,1}. Define the mapping f : (X,7) — (Y,0) by f(a) = f(b) =a and f(c) = c. Then
the only fuzzy closed set in X is A3 and f(A3) is not a fuzzy closed set in Y but a fgspr-closed
set in Y. Hence f is a fgspr-closed map but not a fuzzy closed map.

Theorem 10. Every fuzzy pre-closed (fgp-closed, fsp-closed, fgsp-closed and fgpr-closed) map is
fgspr-closed.

Proof. Let f:(X,1)— (Y,0) is a fuzzy pre-closed (fgp-closed, fsp-closed, fgsp-closed and fgpr-
closed) map. Let A be a fuzzy closed set in X. Then f(A1) is a fuzzy closed set in Y, as f is
a fuzzy pre-closed (fgp-closed, fsp-closed, fgsp-closed and fgpr-closed) map. Therefore (1) is
a fgspr-closed set in Y, since every fuzzy pre-closed (fgp-closed, fsp-closed, fgsp-closed and
fgpr-closed) set is a fgspr-closed set. Hence f is a fgspr-closed map. O

The following examples show that the converse of the above theorems are not true.

Example 11. Let X ={a,b,c}, Y = {a,b,c} and consider the fuzzy sets A1 = {(a,0.5),(5,0.2),
(c,0.6)}, A2 = {(a,0.7),(b,0),(c,0.4)} and A3 = {(a,0.5),(b,0.8),(c,0.4)}. Let 7 = {0,A1,1} and
o = {0,19,1}. Define the mapping f : (X,7) — (Y,0) by f(a) = f(b) =a and f(c) = c. Then
the only fuzzy closed set in X is A3 and f(A3) is not a fuzzy preclosed and a fuzzy semi preclosed
set in Y but a fgspr-closed set in Y. Hence f is a fgspr-closed map but not a fuzzy preclosed
map and a fuzzy semi preclosed map.

Example 12. Let X = {a,b,c}, Y = {a,b,c} and consider the fuzzy sets 1; = {(a,0.8),
(6,0.7),(c,0.2)}, A2 = {(a,0.2),(5,0.3),(c,0.4)}, A3 = {(a,0.3),(b,0.5),(c,0.4)} and A4 = {(a,0.1),
(b,0.3),(c,0.2)}. Let 7 ={0,11,1} and o = {0,A3,A4,1}. Define the mapping [ : (X,7) — (Y,0)
by f(a)=a, f(b)=05b and f(c) = c. Then the only fuzzy closed set in X is 13 and f(A2) is not a
fuzzy gp-closed set and a fuzzy gpr-closed set in Y but a fgspr-closed set in Y. Hence f is a
fgspr-closed map but not a fuzzy gp-closed map and a fuzzy gpr-closed map.
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Example 13. Let X ={a,b,c}, Y = {a,b,c} and consider the fuzzy sets 1; = {(a,0.8),(b,0.6),
(c,0.8)}, A2 = {(a,0.2),(b,0.4),(c,0.2)} and A3 = {(a,0.3),(5,0.5),(c,0.4)}. Let 7 = {0,11,1} and
o ={0,A2,13,1}. Define the mapping f :(X,7) — (Y,0) by f(a)=a, f(b)=5b and f(c) =c. Then
the only fuzzy closed set in X is Ao and f(A2) is not a fuzzy gsp-closed set in Y but a fgspr-closed
set in Y. Hence f is a fgspr-closed map but not a fuzzy gsp-closed map.

Remark 14. From the above results we get the following diagram:

f-closed map fep-closed map fgpr-closed map
N\ l e
fgspr-closed map
/ ! AN
fp-closed map fsp-closed map fgsp-closed map

where A — B represents A implies B but not converse. The above diagram shows the
relationships of fgspr-closed with some other existing fuzzy mappings.

The following theorem state under what conditions the reverse implications hold good.

Theorem 15. If f : (X, 1) — (Y,0) is a fgspr-closed map and Y is fuzzy semi preregular T/
space then f is a fsp-closed map.

Proof. Let f :(X,7)— (Y,0) is a fgspr-closed map. Let A be a fuzzy closed set in X. Then f(A) is
a fgspr-closed set in Y as f is a fgspr-closed map. Since Y is fuzzy semi preregular T'/9 space,
f(A) is a fsp-closed set in Y. Hence f is a fsp-closed map. O

Theorem 16. If f : (X, 1) — (Y ,0) is a fgspr-closed map and Y is fuzzy semi preregular T/
space then f is a fgsp-closed map.

Proof. Let f:(X,7)— (Y,0) is a fgspr-closed map. Let A be a fuzzy closed set in X. Then f(1)
is a fgspr-closed set in Y as f is a fgspr-closed map. Since Y is fuzzy semi preregular T,
space, f(A) is a fsp-closed set in Y. Every fsp-closed set is a fgsp-closed set. Therefore (1) is a
fgsp-closed set in Y. Hence f is a fgsp-closed map. O

Theorem 17. If f : (X,7) — (Y,0) is a fgspr-closed map and Y is fuzzy semi preregular T,
space then [ is a f-closed map.

Proof. Let f:(X,7)— (Y,0) is a fgspr-closed map. Let A be a fuzzy closed set in X. Then f(A) is
a fgspr-closed set in Y as f is a fgspr-closed map. Since Y is fuzzy semi preregular T} 1 Space,
f(A) is a fuzzy closed set in Y. Hence f is a f-closed map. O

Theorem 18. If f : (X,7) — (Y,0) is a fgspr-closed map and Y is fuzzy semi preregular T,
space then [ is a fp-closed map.
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Proof. Let f:(X,7)— (Y,0) is a fgspr-closed map. Let A be a fuzzy closed set in X. Then f(A) is
a fgspr-closed set in Y as f is a fgspr-closed map. Since Y is fuzzy semi preregular T7,, space,
f(A) is a fuzzy closed set in Y. Every f-closed set is a fp-closed set. Therefore f(A) is a fp-closed

set in Y. Hence [ is a fp-closed map. O

Theorem 19. If f : (X,7) — (Y,0) is a fgspr-closed map and Y is fuzzy semi preregular T7,
space then [ is a fgp-closed map.

Proof. Let f:(X,7t)— (Y,0) is a fgspr-closed map. Let A be a fuzzy closed set in X. Then f(1)

is a fgspr-closed set in Y as [ is a fgspr-closed map. Since Y is fuzzy semi preregular T

1/2
space, f(A) is a fuzzy closed set in Y. Every f-closed set is a fgp-closed set. Therefore f(1) is a

fop-closed set in Y. Hence f is a fgp-closed map. O

Theorem 20. If f :(X,7) — (Y,0) is a fgspr-closed map and Y is fuzzy semi preregular T,
space then f is a fgpr-closed map.

Proof. Let f:(X,7)— (Y,0) is a fgspr-closed map. Let 1 be a fuzzy closed set in X. Then f(1)
is a fgspr-closed set in Y as f is a fgspr-closed map. Since Y is fuzzy semi preregular T,
space, f(A) is a fuzzy closed set in Y. Every f-closed set is a fgpr-closed set. Therefore f(A) is a
fgpr-closed set in Y. Hence f is a fgpr-closed map. O

Theorem 21. If a function f :(X,1) — (Y,0) is a fgspr-closed map, then for each fuzzy set A in
X, fgspr-cl(f (1) < f(cl(L)).

Proof. Suppose f is a fgspr-closed map. If 1 is a fuzzy set in X, then cl(1) is a fuzzy closed
set in X. f(cl(1)) is a fgspr-closed set in Y. Since f(A) < f(cl(1)). This implies that fgspr-
cl(f(A)) < fgspr-cl(f(cl(Q))) = f(cl(A)), as f(cl(1)) is a fgspr-closed set in Y. That is fgspr-
cl(f(Q)) < f(cl(A)). O

Theorem 22. A map f :(X,1)— (Y,0) is fgspr-closed iff for each fuzzy set A of Y and for each
fuzzy open set u such that f~1(1) < u, there is a fgspr-open set y of Y such that A <y and

=

Proof. Suppose f is a fgspr-closed map. Let A be a fuzzy set in Y and u be a fuzzy open set
in X such that f~1(1) < . Now, 1 —pu is a fuzzy closed set in X. Then f(1—p) is a fgspr-closed
set in Y since f is a fgspr-closed map. So, 1 - f(1—p) is a fgspr-open set in Y. Thus, choose
y=1-f(1-p)is a fgspr-open set in Y such that A <y and f~X(y) < p.

Conversely, suppose that a is a fuzzy closed set in X. Then 1 — « is a fuzzy open set in X
and f1(1- f(a)) < 1—a. Then there exists a fgspr-open set y of Y such that 1 - f(a) <y and
fly)<l-aandsoa<1-f1(y). Hence 1-y < f(a)< f(1—-f1(y)) <1-1v. This implies that
f(a) =1-v since 1—7v is a fgspr-closed set. f(a) is a fgspr-closed set and thus f is a fgspr-closed
map. 0
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Theorem 23. If f : (X,1) — (Y,0) be onto, fgspr-irresolute and fuzzy closed map. If (X,7) is

*

fuzzy semi preregular T, space, then (Y ,0) is also fuzzy semi preregular Ty, space.

Proof. Let A be a fgspr-closed set in Y. Since f is fgspr-irresolute, then f~1(A) is a fgspr-closed
set in X. As (X, 1) is fuzzy semi preregular 7], space, f ~1() is a fuzzy closed set in X. Again f
is a fuzzy closed map, £(f~1(1)) is a fuzzy closed set in Y. Since f is onto, £(f “1(1)) = A. Thus A

is a fuzzy closed set in Y. Hence (Y, 0) is fuzzy semi preregular 7], space. O

Theorem 24. If f :(X,7) — (Y,0) is a f-closed map and g:(Y,0) — (Z,n) is a fgspr-closed map
then gof :(X,1)—(Z,n) is a fgspr-closed map.

Proof. Let A be a fuzzy closed set in X. Then f(A) is a f-closed set in Y, since f is a f-closed
map in Y. g(f(1)) is a fgspr-closed set in Z as g is a fgspr-closed map. That is go f(1) = g(f(1))
is a fgspr-closed set in Z. Hence go f : (X, 1) — (Z,n) is a fgspr-closed map. O

Theorem 25. If f :(X,7) — (Y,0) and g:(Y,0) — (Z,n) are fgspr-closed maps and Y is fuzzy
semi preregular T, space then gof :(X,1) —(Z,n) is a fgspr-closed map.

Proof. Let 1 be a fuzzy closed set in X. Then f(A) is a fgspr-closed set in Y, since f is a

*

1/2
Y. g(f(1)) is a fgspr-closed set in Z as g is a fgspr-closed map. That is go f(1) = g(f(1)) is a

fgspr-closed map in Y. As Y is fuzzy semi preregular 7', space, f(A) is a fuzzy closed set in

fgspr-closed set in Z. Hence gof : (X,71) — (Z,n) is a fgspr-closed map. O

Theorem 26. Let f :(X,7) — (Y,0) and g:(Y,0) — (Z,n) be two maps such that gof :(X,7) —
(Z,n) is a fgspr-closed map.
(1) If f is f-continuous and surjective, then g is a fgspr-closed map.

(i1) If g is fgspr-irresolute and injective, then f is a fgspr-closed map

Proof. (i) Let A be a fuzzy closed set in Y. Then f~1(1) is a f-closed set in X, since f is
f-continuous. As gof is a fgspr-closed map, go f(f (1)) = g(1) is a fgspr-closed set in Z.

Thus g:(Y,0) — (Z,n) is a fgspr-closed map.
(i) Let u be a fuzzy closed set in X. Then go f(u) is a fgspr-closed set in Z, since gof is a
faspr-closed map. As g is fgspr-irresolute, g~ 1(go f)(u) is a fgspr-closed set in Y. Since g
is injective, g7 1(go () = f(w) is a fgspr-closed set in Y. Therefore f : (X,7) — (Y,0) is a
fgspr-closed map. O

4. fgspr-Open Mappings

In this section, some properties of fuzzy generalized semi preregular open mappings are studied.

Definition 27. Let X and Y be two fuzzy topological spaces. A mapping f : (X, 1) — (Y,0) is
said to be fuzzy generalized semi preregular open (briefly, fgspr-open) if the image of every fuzzy
open set in X is a fgspr-open setin Y.
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Example 28. Let X = {a,b,c}, Y = {a,b,c} and consider the fuzzy sets 1; =
{(a,0.3),(b,0.5),(c,0.6)}, Ao = {(a,0.8),(b,0.6),(c,0.5)} and A3 = {(a,0.2),(b,0.4),(c,0.5)}. Let
T =1{0,A1,1} and o = {0,19,1}. Define the mapping f : (X,7) — (Y,0) by f(a) = f(b) =a and
f(c) = c. Then the only fuzzy open set in X is A3 and f(A3) is a fgspr-open set in Y. Hence f is
a fgspr-open map.

Theorem 29. Every f-open map is a fgspr-open map.

Proof. Let f:(X,7)— (Y,0) is a f-open map. Let 1 be any fuzzy open set in X. Then f(1) is a
fuzzy open set in Y, as f is a f-open map. Therefore f(1) is a fgspr-open set in Y, since every
fuzzy open set is a fgspr-open set. Hence f is a fgspr-open map. O

The following example shows that the converse of the above theorem is not true.

Example 30. Let X ={a,b,c}, Y ={a,b,c} and consider the fuzzy sets 11 = {(a,0.4),(b,0.5),
(c,0.2)}, A2 = {(@,0.9),(5,0.7),(c,0.8)} and A3 = {(¢,0.1),(b,0.3),(c,0.2)}. Let 7 = {0,1;,1} and
o ={0,9,1}. Define the mapping f :(X,7) — (Y,0) by f(a) = f(b) =a and f(c) = c. Then the only
fuzzy open set in X is A3 and f(A3) is not a fuzzy open set in Y but a fgspr-open set in Y. Hence
f is a fgspr-open map but not a fuzzy open map.

Theorem 31. Let [ :(X,7) — (Y,0) is a fgspr-open map and Y is fuzzy semi preregular T/
space then f is a fsp-open map.

Proof. Let f :(X,7)— (Y,0) is a fgspr-open map. Let A be a fuzzy open set in X. Then f(A) is a
fgspr-open setin Y as f is a fgspr-open map. Since Y is fuzzy semi preregular T2 space, (1)
is a fsp-open set in Y. Hence f is a fsp-open map. O

Theorem 32. Let f :(X,7) — (Y,0) is a fgspr-open map and Y is fuzzy semi preregular T,

space then f is a f-open map.

Proof. Let f:(X,7)— (Y ,0) is a fgspr-open map. Let A be a fuzzy open set in X. Then f(1) is a
fgspr-open set in Y as f is a fgspr-open map. Since Y is fuzzy semi preregular 7], space, f(1)
is a fuzzy open set in Y. Hence f is a f-open map. O

Theorem 33. If a function [ :(X,1) — (Y,0) is a fgspr-open map, then for each fuzzy set 1 in X,
faspr-int(f (1)) = f (int(1)).

Proof. Suppose f is a fgspr-open map. If 1 is a fuzzy set in X, then int(1) is a fuzzy open
set in X. f(int(1)) is a fgspr-open set in Y. Since f(A) = f(int(1)). This implies that fgspr-
int(f (L)) = fgspr-int(f (int(1))) = f(int(1)), as f(@int(A)) is a fgspr-open set in Y. That is fgspr-
int(f(1)) = f@int(1)). O

Theorem 34. A map f :(X,t) — (Y,0) is fespr-open iff for each fuzzy set A of Y and for each
fuzzy closed set u such that f~Y(\) < u, there is a fgspr-closed set y of Y such that A <y and

fly=su
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Proof. Suppose [ :(X,7) — (Y,0) is a fgspr-open map. Let A be a fuzzy set in Y and u be a
fuzzy closed set in X such that f~1(1) < u. Now, 1— p is a fuzzy open set in X. Then f(1—p)is a
fgspr-open set in Y since f is a fgspr-open map. So, 1 — f(1— ) is a fgspr-closed set in Y. Thus,
choose y =1— f(1—p) is a fgspr-closed set in Y such that A <y and f~(y) < p.

Conversely, suppose that a is a fuzzy open set in X. Then 1 - « is a fuzzy closed set in X
and f~'(1- f(a)) < 1—a. Then there exists a fgspr-closed set y of Y such that 1 - f(a) <y and
fly)<l-aandsoa<1-f"1(y). Hence 1-y < f(a)< f(1-f1(y)) <1-1v. This implies that
f(a)=1-1v since 1 -7 is a fgspr-open set. f(a) is a fgspr-open set and thus f is a fgspr-open
map. O

Theorem 35. If f : (X,7) — (Y,0) be onto, fgspr-irresolute and fuzzy open map. If (X, 1) is fuzzy

*

semi preregular T, space, then (Y,0) is also fuzzy semi preregular T, space.

Proof. Let A be a fgspr-open set in Y. Since f is fgspr-irresolute, then f~1(1) is a fgspr-open

1/2
is a fuzzy open map, f(f~1(1)) is a fuzzy open set in Y. Since f is onto, f(f 1(1)) = A. Thus A is

set in X. As (X, 1) is fuzzy semi preregular T, space, f~1() is a fuzzy open set in X. Again f

a fuzzy open set in Y. Hence (Y, 0) is fuzzy semi preregular 7], space. O

Theorem 36. If f : (X,7) — (Y,0) is a f-open map and g :(Y,0) — (Z,n) is a fgspr-open map
then gof :(X,1)—(Z,n) is a fgspr-open map.

Proof. Let A be a fuzzy open set in X. Then f(A) is a f-open set in Y, since f is a f-open map
in Y. g(f(1)) is a fgspr-open set in Z as g is a fgspr-open map. That is go f(1) = g(f (1)) is a
fgspr-open set in Z. Hence gof :(X,7) — (Z,n) is a fgspr-open map. O

Theorem 37. If f : (X,7) — (Y,0) and g :(Y,0) — (Z,n) are fgspr-open maps and Y is fuzzy
semi preregular T, space then gof :(X,7) —(Z,n) is a fgspr-open map.

Proof. Let A be a fuzzy open set in X. Then f(A) is a fgspr-open set in Y, since f is a fgspr-open
map in Y. As Y is fuzzy semi preregular 7], space, f(A) is a fuzzy open set in Y. g(f(1)) is a
fgspr-open set in Z as g is a fgspr-open map. That is go f(1) = g(f(A)) is a fgspr-open set in Z.

Hence gof : (X,1) — (Z,n) is a fgspr-open map. O
Theorem 38. Let f :(X,7)— (Y,0) and g:(Y,0) — (Z,n) be two maps such that gof :(X,7) —
(Z,n) is a fgspr-open map.

(1) If f is f-continuous and surjective, then g is a fgspr-open map.

(1) If g is fgspr-irresolute and injective, then f is a fgspr-open map
Proof. (i) Let A be a fuzzy open set in Y. Then f~1(1) is a f-open set in X, since [ is f-

continuous. As gof is a fgspr-open map, go f(f “1(1)) = g(1) is a fgspr-open set in Z. Thus
g:(Y,o0)— (Z,n) is a fgspr-open map.

Journal of Informatics and Mathematical Sciences, Vol. 9, No. 3, pp.|623 , 2017



632 On fgspr-Closed and fgspr-Open Mappings: M. Thiruchelvi and G. Ilango

(i) Let u be a fuzzy open set in X. Then go f(u) is a fgspr-open set in Z, since gof is a

fgspr-open map. As g is fgspr-irresolute, g~ X(g o f)(u) is a fgspr-open set in Y. Since g

is injective, g 1(g o f)(u) = f(u) is a fgspr-open set in Y. Therefore f :(X,7) — (Y,0) is a
fgspr-open map.

O

5. fgspr*-Closed Mappings and fgspr*-Open Mappings

In this section, some properties of fgspr*-closed mappings and fgspr*-open mappings are
studied.

Definition 39. Let X and Y be two fuzzy topological spaces. A mapping f :(X,7) — (Y,0) is
said to be fuzzy generalized semi preregular® closed (briefly, fgspr*-closed) if the image of every
fgspr-closed set in X is a fgspr-closed setin Y.

Example 40. Let X ={a,b,c}, Y ={a, b, c} and consider the fuzzy sets 11 = {(a,0),(b,1),(c,0)},
A2 ={(a,0),(b,1),(c, D}, A3 ={(a,1),(b,0),(c,0)}, A4 ={(a,1),(,0),(c,1}, A5 = {(a,1),(b,1),(c,0)}
and Ag = {(a,0),(b,0),(c,1)}. Let T ={0,A1,A2,1} and o = {0, A5, 1}. Define the mapping f : (X,7) —
(Y,o0) by f(a)=f(b)=a and f(c) = c. Then the only fgspr-closed sets in X are A3, 14 and Ag
and f(A3), f(A4) and f(Ag) are fgspr-closed sets in Y. Hence f is a fgspr*-closed map.

Definition 41. Let X and Y be two fuzzy topological spaces. A mapping [ : (X,7) — (Y,0) is
said to be fuzzy generalized semi preregular* open (briefly, fgspr*-open) if the image of every
fgspr-open set in X is a fgspr-open setin Y.

Example 42. Let X ={a,b,c} =Y and consider the fuzzy sets 11 = {(a,1),(b,0),(c,0)}, g =
{(a,1),(0,1),(c,0)}, A3 = {(a,1),(b,0),(c,1)}, A4 = {(a,0),(b,1),(c,1)} and A5 = {(a,0),(b,0),(c, 1)}
Let 7 ={0,11,19,1} and o = {0, 13,1}. Define the mapping f : (X,7) — (Y,0) by f(a) =f(c) =a
and f(b) = b. Then the only fgspr-open sets in X are A1, A2, A3 and f(11), f(12) and f(A3) are
fgspr-open sets in Y. Hence f is a fgspr*-open map.

Theorem 43. Every fgspr*-closed (fgspr*-open) map is a fgspr-closed (fgspr-open) map.

Proof. Let f:(X,7)— (Y,0) is a fgspr*-closed map. Let A be a fuzzy closed set in X. Then A
is a fgspr-closed set in X, since every fuzzy closed set is a fgspr-closed set. Therefore f(1) is a
fospr-closed setin Y, as f is a fgspr*-closed map. Hence f is a fgspr-closed map. O

The following example shows that the converse of the above theorem is not true.

Example 44. Let X ={a,b,c} =Y and consider the fuzzy sets 11 = {(,0),(b,1),(c,0)}, Ao =
{(@,0),(b,1),(c,1)}, A3 = {(a,1),(b,0),(c,0)}, A4 = {(a,1),(5,0),(c,1)} and A5 = {(a,1),(d,1),(c,0)}
and Ag = {(a,0),(b,0),(c,1)}. Let T ={0,A5,1} and o = {0, 11, A9, 1}. Define the mapping f : (X,7) —
(Y,0) by f(a) = f(b) =a and f(c) = c. Then the only f-closed set in X is 1g and f(Ag) is a
fgspr-closed sets in Y. Hence f is a fgspr-closed map. But 11 and Ay are fgspr-closed sets in X
and (A1) and f(Ag) are not fgspr-closed sets in Y. Hence f is not a fgspr*-closed map.
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Theorem 45. If f : (X,7) — (Y,0) is a fgspr-closed (fgspr-open) map and g :(Y,0) —(Z,n) isa
faspr™*-closed (fgspr™*-open) map then gof :(X,1)— (Z,n) is a fgspr™*-closed (fgspr™-open) map.

Proof. Let A be a fuzzy closed set in X. Then f(A) is a fgspr-closed set in Y, since f is a
fespr-closed map in Y. g(f (1)) is a fgspr-closed set in Z as g is a fgspr*-closed map. That is
gof(A)=g(f(1)) is a fgspr-closed set in Z. Hence gof : (X, 1) — (Z,n) is a fgspr*-closed map. []

Theorem 46. Composition of two fgspr*-closed (fgspr*-open) mappings is fgspr*-closed (fgspr” -
open,).

(ie) If f:(X,1)— (Y,0) and g:(Y,0) — (Z,n) is a fgspr*-closed (fgspr*-open) mappings then
gof:(X,1)—(Z,n) is a fgspr*-closed (fgspr*-open) map.

Proof. Let A be a fgspr-closed set in X. Then f(A) is a fgspr-closed set in Y, since [ is a
fgspr*-closed map in Y. g(f(1)) is a fgspr-closed set in Z as g is a fgspr*-closed map. That is
gof(1)=g(f(1)) is a fgspr-closed set in Z. Hence gof : (X, 1) — (Z,n) is a fgspr*-closed map. []

Theorem 47. Let f :(X,7) — (Y,0) and g:(Y,0) — (Z,n) be two maps such that gof :(X,7) —
(Z,n) is a fgspr*-closed (fgspr*-open) map.

(1) If f is fgspr-irresolute and surjective, then g is a fgspr*-closed (fgspr™-open) map.

(ii) If g is fgspr-irresolute and injective, then f is a fgspr*-closed (fgspr*-open) map.

Proof. (i) Let A be a fgspr-closed set in Y. Then f~1(A) is a fgspr-closed set in X, since [ is
fgspr-irresolute. As go f is a fgspr*-closed map, go f(f "1(1)) = g(1) is a fgspr-closed set
in Z. Thus g:(Y,0) — (Z,n) is a fgspr*-closed map.

(i) Let u be a fgspr-closed set in X. Then go f(u) is a fgspr-closed set in Z, since gof is a
faspr*-closed map. As g is fgspr-irresolute, g7 (g o f)(u) is a fgspr-closed set in Y. Since g
is injective, g 1(g o f)(u) = f(w) is a fgspr-closed set in Y. Therefore f : (X,7) — (Y,0) is a
fgspr*-closed map. O

6. Conclusion

It is an interesting exercise to work on fgspr-closed mappings and fgspr-open mappings with
some other existing fuzzy mappings. Composition of these mappings have also been studied.
Similarly,other forms of fgspr-closed sets and fgspr-open sets can be used to define fgspr*-closed
mappings and fgspr*-open mappings. This new concept and its properties will be useful for
future research in this field.
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