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An Educational Management Problem with Continuous
Signal Space

John E. Goulionis and V. K. Benos

Abstract. Partially Observable Markov Decision Process (POMDPs) have been
suggested as a suitable model to formalizing the planning of educational
management. In this paper, we discuss a specialization of POMDPs that is tailored
to a frequently re-occurring type of educational problem, with five states (bad,
moderate, good, very good, excellent), two teaching methods a traditional based
to National program and a new education method based to the British system. We
extend the model of POMDPs with finite discrete signal space to a more natural
model where the signal space is continuous instead of finite. We consider the
significant and realistic problem with probability density functions for the signals
to be uniformly distributed. We prove the piecewise affinity of the infinite horizon
optimal utility function associated with this problem. To solve this problem we
use a procedure that take advantage of special problem structure, and we provide
optimal policies to stochastic and dynamic decisions naturally arise in finding the
optimal educational method.

1. Introduction

Educational models are meant to contribute to all aspects of student’s
development. A model is validated if its effectiveness in contributing to student’s
development has been scientifically confirmed. The introduction and continuation
of British Education System is a burning issue in Greece. The merits and demerits of
this system are being discussed continuously in public forums. A uniform education
system is demanded to be implemented in Greece. In such circumstances there was
a need of a study to compare the British education system and National program
with respect to curriculum, teaching methodology and evaluation mechanism of
these programs.

As our educational systems increases in size and complexity, and as they become
increasingly dependent upon the devices and techniques of the new educational
technology, a systematic quantitative approach to the design and operation of these
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educational systems is a vital necessity. For this reason we begin the process for
the simple yet very important system composed of a class of students.

Partially Observable Markov Decision Process POMDP is a general sequential
decision-making model, where the effects of actions are nondeterministic and only
partial information about world states is available. Recently POMDPs have been
suggested as providing a suitable, integrated approach to educational management
problems Sondik (1971), Goulionis (2005). In these models it is assumed that
uncertainty exists in the transitions of the system itself and in our knowledge of
which state the system truly occupies. Therefore, the objective is to find an optimal
policy based on the observations of the system and the previous decision rules
applied.

Value iteration is a popular algorithm for finding solutions to POMDPs,
Bertsekas (1997). It can find an optimal value function for a finite horizon POMDP
and can also find an arbitrarily good estimate of the optimal value function for
an infinite-horizon POMDP. This method is inefficient for two reasons. First, a
(DP) update is expensive due to the need of accounting for all belief states in a
continuous belief space. Second, this method needs to contact a large number of
(DP) updates before its convergence Papadimitriou et al. (1987).

The piecewise affinity of the optimal function for our model could have also
been obtained using the value iteration method of Littman (1996). We use the
piecewise affinity of the optimal cost function Vβ (π) to obtain analytic expression
to compute the optimal reward/cost and policy, (depending explicitly and only on
the basic data of the problem). In particular, we illustrated the fact that the rich
mathematical structure of the Markov models sometimes enables explicit results
(e.g., closed form formulas), that give considerable insight about the behavior of
the physical systems being modeled.

In section 2, the model is described in detail some assumptions are provided,
and we discuss a specialization of POMDPs associates with an educational system
problem. We obtain a set of appropriate model parameters and investigate the
structural properties of the case with five-states.

The rest of the paper is organized as follows.
In section 3 we extend the usual model of POMDP. We consider that signal

distributions have density functions whereas in the section 2 we assume that
they are discrete. This is a realistic problem for educational models, because
examinations are the integral part of Education Systems. Effectiveness and
authenticity of the education system cannot be ascertained without tests. By the
tests we have the signals and the partial information about the state of the class,
but the results of the tests usually give continuous distribution. For this problem
we compute the optimal policy in the two action educational model. We develop a
solution procedure utilizing the properties of the utility function. In section 4 we
give a numerical example.
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2. A POMDP teaching model

In the modelling of physical systems the concept of the state of the physical
system has proved to be a very valuable tool for the characterization of system
performance Sondik (1978), Goulionis et al. (2007). This idea may also be an
important aid to the description of the learning process.

Thus in the class of the students the internal state of a class is measured
of the internal state of the students that constitute the class. We shall use the
internal state of a student as a representation of his learning characteristics. The
internal state of a student depends on different factors, as hereditary roots, familial
and social environments, personal model of thinking, preexisted knowledge,
sentimental reasons and generally psychological factors. Therefore, the internal
state of a class depends on many factors and for this reason is unknown. However
we can take a sense of this internal state by some observations, for example (score
in a test, participation in the learning process, the language of a body etc) see
Goulionis (2005).

A Partially Observable Markov Decision Process (POMDP), is a collection
(S, A, P,Θ, R, c,β). The POMDP consists of a core process x t , an observation process
zt , and a decision process αt .

The core process {x t , t = 0, 1, 2, . . .} is a discrete-time Markov process.

(1) The deterioration levels of the class are classified into a finite number of states.
The state numbers are ordered to reflect the degree of the deterioration. The
states (Weak, average, good, very good, excellent) are coded with the numbers
5, 4, 3, 2, 1 respectively; S = {1, 2, 3, 4, 5} the set of states.

(2) At any given time period, the teacher selects one of the actions of the set A.
He has a finite number of actions (educational-methods) available in order
to control the situation of the class. The first method is Cheap. The second
method is luxurious. The actions at each time are coded with 1,2 respectively;
A≡ {1, 2}. The teacher is unable to observe the state of the class directly and
must make his/her decisions sequentially based upon partial information time.

(3) State transitions occur according to a Markov Chain whose transition
probabilities are determined by the choice of the material to be presented
to the class. To accomplish the effect of the teaching method upon the internal
state knowledge of a class by transitions from one state to another state, we
have a transition probability matrix Pα = (pa

i j). The state process evolves
according to the transition probabilities define by

pi j(a) = P{x t+1 = j|x t = i, at = a},
where i, j = 1, 2, . . . , 5, a ∈ A.

(4) An observer does not directly observe the core process. He sees instead one
of the outputs which is probabilistically related to zt . At each time period, the
state of the class is monitored incompletely by some monitoring mechanism.
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The outcome of the monitoring is classified into finite levels Θ = {1, 2, . . . , 5}.
The signals for our model represent outcomes of the tests. For simplicity we
consider five types of observations are coded in 1, 2, . . . , 5. We consider that
the observation of type 1 (θ = 1), is favorable for the state 1 (the best state
of a class), while the observation of type 5 (θ = 5), is favorable for the
state 5, (the worst state of a class). For example we consider that we have
an observation of type 1, 2, 3, 4, 5 if we have success in the test over 90%, 70-
90%, 50-70%, 30-50% and less than 30% respectively. Thus the sets of signals
is Θ= {1, 2, 3, 4, 5}.

(5) The observation process is related to the state and the control processes by
means of the conditional probabilities rx t ,yt+1

(ut) defined by

riθ (a) = P{yt+1 = θ |x t = i, at = a}, i = 1, 2, . . . , 5.

(6) The cost structure considered here is as follows:
C a(i), where c(i, a) is the scalar valued cost accrued, when the current state
is i ∈ S and action is α ∈ A.

(7) β ∈ (0, 1) is a discount factor.

Although the state of the core process is not known with certainty, it is possible to
calculate the probability that the core process is in a given state. In particular we
define:

πi(t) = Pr{x t = i|z0, . . . , Zt ,α0, . . . , zt−1} .
The vector π(t) = (π1(t),π2(t), . . . ,πN (t)) is called information vector, and the

space of all such vectors, Π, is called the information space. We have:
N∑

i=1
πi(t) = 1

and πi ≥ 0. It is well known that π(t) is a sufficient statistic Bertsekas (1997).
More precisely, π(t) summarizes all of the necessary information of the history of
the process for choosing an action at time t.

If the information vector at time t is π and an alternative α is selected, and if
an output θ results, then the new information π(t + 1) is given by T (π|θ ,α). By
Bayes’ rule.

T (π(t)|θ ,α) = π(t + 1) =
π · Pα · Rαθ
{θ |π,α} . (2.1)

{θ |π,α}= π · Pα ·Rαθ ·1 is the probability of receiving observation θ at stage t+1,
given that π(t) and α is the action selected at stage t. Assuming 1= col{1, . . . , 1}.

Ti(π(t)/θ ,α) =

rαiθ ·
j=N∑
j=1
π j(t) · pαji

j=N∑
j=1

rαiθ
N∑

j=1
π j(t) · pαji

. (2.2)

Rαθ be the diagonal matrix having rαiθ as its j-th diagonal term and zeros for all
off-diagonal terms.
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The objective of a POMDP is to find an optimal policy among the admissible
policies such that it minimizes a given performance index, typically the total
expected discounted cost to be accrued over the infinite horizon, conditioned
on the a priori π(0). These costs are defined in terms of the state x t for each
admissible strategy, δ, and information vector π(0) of the initial state by:

Discounted-cost (DC)

In terms of the information vector π(t) we have that:

Jβ (δ,π(0)) : lim
n→∞

Eδπ(0)

� n∑

t=0

β tπ(t)ca(t)
�

. (2.3)

we define:

Vβ (π)≡ inf
δ̄

Jβ (δ̄,π). (2.4)

Then, Vβ(π) is the total expected discounted cost accrued when an optimal policy
is selected, given that the initial information vector is π, and future costs are
discounted at rate β . It is well known Goulionis (2007) that Vβ(π) is the unique
solution of the functional equation:

Vβ (π) =max
α

(
π · cα + β ·

∑

θ

{θ/π,α} · Vβ (T (π/θ ,α))

)
(2.5)

In this point some notation and operators useful for later sections are introduced.

Notations and operators

A policy is a function which maps the state space into the action space; i.e., if δ
is a policy, then δ : Π→ A where δ(π) is the action taken in state π ∈ Π. Let the
policy space ∆ be the set of all stationary policies. Let B be the set of all bounded
real valued functions on Π. In this paper, the norm ‖ · ‖ is the supreme norm; for
example, if υ ∈ B, then ‖υ‖= sup{‖υ(π)| : π ∈ Π}.

When computing optimal policies in the infinite horizon case, we need only
consider stationary policies Sondik (1978). A stationary policy is denoted by
(δ)∞ = (δ,δ, . . .).

For convenience define the local income function h which assigns a real number
to each triple (π,α,υ) with π ∈ Π, a ∈ A, and υ ∈ B(Π).

h : Π× A× B(Π)→ R
h(π,α,υ) := π · cα + β

∑

θ

{θ |π, a} ·υ(T (π, a,θ)) (2.6)

[Hδ(υ)](π) = h(π,δ(π),υ) . (2.7)

Finally an optimal operator is defined as:

Hυ :=max
δ∈∆
[Hδυ] . (2.8)

The operators have the following properties: Boundness; monotonicity and the
contraction property, Lovejoy (1991).
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This contraction property can be stated thus: For some fixed β , 0≤ β < 1, then
‖Hδυ−Hδu‖ ≤ β · ‖υ− u‖ for all u, υ ∈ B(Π) and δ ∈∆.

The metric ρ on B(Π) is defined by ρ(v,υ) = sup{|v(π)−υ(π)| : π ∈ Π}. Hδ,
and H are isotone contractions on B(Π) with unique fixed points, say Vδ and V ∗,
respectively Lovejoy (1991) and if we start with any V0 ∈ B(Π) and recursively
define:

Vδ,t = HδVδ,t−1

and

Vt = HVt−1

then as t goes to infinity Vt and Vδ,t will converge in metric ρ on B(Π) to V ∗ and
Vδ, respectively, and V ∗ = sup{Vδ : allδ}, V ∗ = V δ if and only if

V ∗ = HV ∗ = HδV ∗ . (2.9)

Therefore the optimal value function or its approximation can be computed using
dynamic programming techniques. The sequence of estimates converges to the
unique fixed-point solution which the direct consequence of Banach’s theorem for
contraction mappings, Monahan (1982).

Sondik (1978) show that for any finite t, the optimal value function V ∗t is
piecewise linear and convex, i.e., V ∗t (π) = max{π · γ : γ ∈ Γt} for some finite set
Γt of vectors in Rn. Using the representation for V ∗t in the dynamic programming
recursion V ∗t = HV ∗t−1, they show that this latter mapping can be represented as:

V ∗t = HV ∗t−1(π) =max

(
π ·

qα + β · Pa

∑

θ

Rαθ · γl(π,α,θ)


: α ∈ A

)
, (2.10)

where l(π,α,θ) is the index of the γ ∈ Γt that maximizes π ·Pα ·Rαθ ·γ. Thus, given
Γt and any π ∈ Π(s), one would find l(π,α,θ ) for each a ∈ A and θ ∈Θ, and then
find the optimal action and V ∗t (π) from (2.10). The inner bracketed term in (2.10)
evaluated at the optimal action is a gradient vector for V ∗t at π; call this γ(π).

The simplest way to define the control function δ∗ : Π → A from the ith
approximation of the value function Vt is via greedy one-step lookahead:

δ∗(π) : ar g max
a
{π.qα + β .

M∑

θ=1

{θ/π,α} · Vi(T (π,θ ,α))}. (2.11)

The accuracy of the approximate solution (t-th value function) with regard to V ∗

can be expressed in terms of the Bellman error ε, Littman (1996).

3. Educational models with uniformly distributed signal processes

In this section we suppose that the basic assumptions are the same. The
only difference is the nature of the signal processes. We assume that the signal
distributions have density functions whereas in the section 2 we assume that they
are discrete. This is a realistic problem for educational models. The parameters of
these probability density functions depend on the system state as well as the action
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taken in the previous decision epoch. More precisely, for each educational system
state i ∈ S, each action a ∈ A, for each time t = 0, 1, 2, . . ., there is a probability
density function f a

i,t on the set of signals. For the infinite horizon problem, we
assume that the probability density function is time invariant and the dependency
on t is suppressed from the notation. Then the conditional density function on the
set of the signal can then be computed as

f̄ (θ |π,α) =
N∑

K=1

N∑

j=1

π j · Pαj,κ · f ακ (θ)

or, in matrix form

f̄ (θ |π,α) = π · PαR̄αθ · 1 , (3.1)

where R̄αθ is a diagonal matrix with f αi (θ ) as its diagonal elements and 1 is a N -
dimensional column vector with all elements being 1. Analogous to the definition
of T (π,α,θ), define T̄ (π,α,θ) as the probability distribution of the system state
at the next time epoch, given that the probability distribution of the current system
state is π, the action applied is a, and the signal obtained in the next time epoch
is θ ; i.e,

T̄i(π,α,θ ) = Pr(x t + 1= i|π, Yt + 1= α, Zt + 1= θ)

=

N∑
j=1
π j · Pαj,i · f αi (θ )

N∑
κ=1

N∑
j=1
π j · Pαj,κ · f ακ (θ)

(3.2)

or, in matrix form,

T̄ (π,α,θ) =
π · Pα · R̄αθ
f̄ (θ |π,α)

=
π · Pα · R̄αθ
π · Pα · R̄α

θ
· 1 . (3.3)

Hence

υt(π) = max
α∈A

E{qα(x t) + β ·υt+1(T̄ (π,α,θ))|π,α} (3.4)

= max
α∈A

(
N∑

i=1

πi · qα(i) + β ·
∫

θ∈Θ
f̃ (θ |π,α) ·υt+1(T̄ (π,α,θ)) · dθ

)
, (3.5)

υt(π) = max
α∈A

(
N∑

i=1

πi · qα(i) + β ·
∫

θ∈Θ
π · Pα · R̄αθ · γl(π,α,θ) · dθ

)
. (3.6)

A uniform distribution is commonly used to model a process without much
available information. The algorithm developed for the discrete signal space can
then be applied to solve this type of problem and are more efficient than the
method which discussed in the previous section. Let Θ be the signal space. Also, at
decision epoch t, letΘa

t,i be the signal space for the process given that the state of a
class is i and that the decision taken at previous decision epoch is a. The probability
density function for the signal in this signal space is uniformly distributed. A trivial
case occurs if the state can be deduced for sure from the observed signal; i.e.,
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Θ(t, i,α) ∩ Θ(t, j,α) = ∅ for all pairs of states i and j. This can clearly be
formulated as a completely observable MDP. Of course the above technique fails if
the supports of the signal distribution overlap. However, if the signal distributions
are uniform, then the problem can be reformulated as a POMDP with finite signal
space. Θ′(t, i,α) = Θ − Θ(t, i,α) and Θ̄(t, i,α) = {θ(t, i,α),Θ′(t, i,α)}. Then
Θ̄(t, i,α) is a partition of the signal space Θ. Let Θt = {bΘt,1, bΘt,2, . . . , bΘt,K) be the
product partition of Θ̄(t, i,α) for all system states i and actions a. Since there are
only a finite number, 5, of system states, there are only a finite number of elements
in Θt . The key to converting a uniformly distributed signal problems to a discrete
signal problems is that the only information provided by the signal is the cell of
the partition in which it occurs. Each element in Θt can be viewed as a signal in a
finite signal space problem. We can extend this simple case. By following the same
procedures as discussed above it can be shown that educational models formulated
with POMDPs whose signal processes are step functions can also be formulated as
POMDPs with finite signals.

Lemma 3.1. For every i ∈ S, f αi (·) is constant on every element of Θt .

Proof. Let θ1, θ2 be any two arbitrary signals in any bΘi, j ∈ Θt . By the method
discussed above for generating the elements in Θt , either bΘt, j

⋂
Θ(t, i,α) = ∅

or bΘt, j ⊆ Θ(t, i,α) for all system states i. If bΘt, j ∩Θ(t, i,α) = ∅, then f αi (θ1) =
f αi (θ2) = 0. If bΘt, j ⊆Θ(t, i,α), then by uniform assumption, f αi (θ1) = f αi (θ2). ¤

Theorem 3.2. T (π, a, ·) is constant on every element of Θt .

Proof. It is obvious using Lemma 3.1. ¤

We give now the following definition.

Definition 3.3. Θπ,α,γ̄ = {θ ∈Θ : π · Pα · R̄αθ · γ̄≥ π · Pα · R̄αθ · γ, ∀ γ ∈ Γ}. Then

Hυ(π) = max
α∈A

� N∑

i=1

πi · qα(i) + β
∑

Θπ,α,γ̄

πPα ·
∫

θ∈Θπ,α,γ̄

R̄αθ · γ̄ · dθ
�

= max
α∈A

� N∑

i=1

πi · qα(i) + β ·
∑

Θπ,α,γ̄

π · Pα · ξα(π,γ̄)
�

= max
α∈A

�
π ·
�

qα + β ·
∑

Θπ,α,γ̄

Pα · ξα(π,γ̄)
��

,

ξα(π, γ̄) =




∫
θ∈Θπ,α,γ̄

f α1 (θ) · γ̄1 · dθ∫
θ∈Θπ,α,γ̄

f α2 (θ) · γ̄2 · dθ
...∫

θ∈Θπ,α,γ̄
f αN (θ) · γ̄N · dθ




,

where T̄(π,α,θ) · γl(π,α,θ) ≥ T̄ (π,α,θ ) · γk for all γk supporting υt+1.
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4. Numerical example

Let us illustrate the method for computing with the following example. We have
a class The states (bad, moderate, good, very good, excellent) are coded with the
numbers 5, 4, 3, 2, 1 respectively; S = {1, 2, 3, 4, 5} the set of states. We have two
different teaching methods.

p1 =




0.7 0.2 0.1 0 0
0.4 0.4 0.1 0.1 0
0.3 0.3 0.4 0.1 0
0 0 0.1 0.1 0.8


 , q1 =




10
7
5
−6
−7
−8




,

p2 =




0.8 0.1 0.1 0 0
0.7 0.3 0 0 0
0.1 0.5 0.4 0 0
0 0.3 0.7 0 0
0 0.1 0.1 0.8 0.1




, q2 =




12
9
6
−7
−8
−9




.

The signal processes have the following density functions for θ > 0. (other 0)

f 1
1 = e−θ , f 2

1 = 20.e−θ ,

f 1
2 = 8.e−θ , f 2

2 = 25.e−θ ,

f 1
3 = 8.e−θ , f 2

3 = 26.e−θ ,

f 1
4 = 9.e−θ , f 2

4 = 28.e−θ ,

f 1
5 = 10.e−θ , f 2

5 = 30.e−θ .

Let us assume that β = 0.9, π= (0, 0, 1, 0, 0). Then Hυ at π= (0, 0, 1, 0, 0) is 5.70
and the linear support corresponding to this state is [−3.57, 4.42, 4.58, 5.49, 6.65].
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