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Abstract. The Substitution box (S-box) plays an important role in a block cipher as it is the only
nonlinear part of the cipher in most cases. S-box S can be considered as a vectorial Boolean function
consisting of m individual Boolean functions f1, f2, . . . , fm , where f i : GF(2n)→GF(2) and f i(x)= yi for
i = 1,2, . . . ,m. These functions are called coordinate Boolean functions of the S-box S. To avoid various
attacks on the ciphers and for efficient software implementation, the coordinate Boolean functions of
S-boxes are required to satisfy a lot of properties, for instance being a permutation defined on the
fields with even degrees, with a high nonlinearity, a low differential uniformity and a high algebraic
degree, etc. However, it seems very difficult to find an S-box with the coordinate Boolean functions to
satisfy all the criteria. The S-box with low algebraic degree of the coordinate Boolean functions is
vulnerable to many attacks such as linear and differential cryptanalysis, for instance higher-order
differential attacks, algebraic attacks or cube attacks. In this paper we propose an algorithm for
improving algebraic degree of the S-box coordinate Boolean functions while not affecting its other
important properties. The algorithm is based on affine equivalence transformation of the S-boxes.
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1. Introduction

In [19], C. Shannon defined the confusion and diffusion which should exist in an encryption
system. In block ciphers, S-box and P-box are two important components of a secure block
cipher identified by C. Shannon. The basic purpose of an S-box is to produce confusion between
the ciphertext and the secret key and P-box is responsible for diffusion. Basically, confusion
is required so that the ciphertext is related to both the plaintext and secret key, in a complex
way. Since the S-box plays an important role in a block cipher as it is the only nonlinear
part of the cipher in most cases. To avoid various attacks on the ciphers and for efficient
software implementation, S-boxes are required to satisfy a lot of properties, for instance being
a permutation defined on the fields with even degrees, with a high algebraic degree, a low
differential uniformity and a high nonlinearity, etc., [20, 12, 14]. However, it seems very difficult
to find an S-box to satisfy all the criteria.

Actually, the S-box with the coordinate Boolean functions of low algebraic degree is vulnerable
to many attacks, for instance higher-order differential attacks, algebraic attacks or cube attacks
[4, 5]. In this paper we propose an algorithm that allows improving algebraic degree of the S-box
coordinate Boolean functions while not affecting its other properties in order to increase ability
to resist the attacks mentioned above. This proposed algorithm is based on affine equivalence
transformation of S-boxes [14, 1].

The rest of the paper is organized as follows: In Section 2, some fundamental definitions are
given as a refresher, to help better understand the research results given later in the article,
and the main cryptographic properties of S-box are discussed. In Section 3, we present and
discuss our algorithm. Finally, Section 4 summarizes the paper.

2. Definitions and preliminaries

In this section we will briefly recall some of the basic definitions and properties of Boolean
functions. For a comprehensive survey on Boolean functions we refer to [6, 7, 14].

S-box: Let the S-box of an n-binary input into m-binary output mapping is denoted by S. Then
S : GF(2n) → GF(2m) and to each x = (x1, x2, . . . , xn) ∈ GF(2n) some y = (y1, y2, . . . , ym) ∈ GF(2m)
is assigned by S(x) = y, where GF(2) = {0,1} is the 1-dimensional Boolean space. Clearly, S
can be considered as a vectorial Boolean function consisting of m individual Boolean functions
f1, f2, . . . , fm, where f i : GF(2n) → GF(2) and f i(x) = yi for i = 1,2, . . . ,m. These functions are
called coordinate Boolean functions of the S-box S and it is well known that most of the
desirable cryptographic properties of S can be defined in terms of their linear combinations.
The S-box coordinate Boolean functions and all their linear combinations are referred as the
S-box component Boolean functions.
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Although the original Data Encryption Standard [16] used S-boxes mapping a six-bit input
to a four-bit output, most modern cipher designs use only bijectiven ×nS-boxes. In particular,
we note that the current Advanced Encryption Standard (AES) [15], and most block ciphers
designed for environments where the AES is too resource-intensive (e.g. PRESENT [2]), use
only bijectiven ×nS-boxes. For this reason, we will focus primarily on functions of this sort.

Algebraic normal form of Boolean function: A Boolean function can be represented by a
truth table, which is the binary output vector of the function containing 2n elements. We obtain
the polarity truth table when instead of f (x), the signed function f̂ (x)= (−1) f (x) is considered.
Another way of representing a Boolean function is bymeans of its algebraic normal form (ANF).

A Boolean function f can be represented uniquely in the form of a polynomial with 2n coefficients
whose degree in each variable is at most 1 (Zhegalkin polynomial or Algebraic Normal Form-
ANF) [11, 3]:

f (x)= a0 ⊕
n∑

i=1
aixi ⊕

∑
1≤i< j≤n

ai jxix j ⊕ . . .⊕a1...nx1 . . . xn, (2.1)

where all the 2n coefficients ai,ai j, . . . ,a1...n ∈ GF(2) and xi ∈ {0,1}, for all i = 1, . . .n, and
∑

, ⊕
denote the modulo 2 summation.

Each coefficients of the ANF a0,a1, . . . ,ai,ai j, . . . ,a1...n corresponds to term in the ANF form.

Let us represent the polynomial (2.1) through a vector p, in which all the coefficients
ai,ai j, . . . ,a1...n are replaced by coefficients a0,a1, . . . ,a2n−1, respectively, where ai ∈GF(2), for
all i = 0 . . .2n −1.

The algebraic degree of an n-variable Boolean function f (x), denoted by deg( f ), is the number
of variables of the largest product term of the function’s ANF having a non-zero coefficient.

For example, with p in the form of the coefficient vector p = (1,0,1,0,0,1,1,0), then the
corresponding polynomial is f (x)= 1⊕ x1 ⊕ x0x3 ⊕ x1x2 the algebraic degree of f (x) is 2.

There exist various generalizations of the concept of algebraic degree to the case of the S-box.
The most common such definition [8, 12] is as follows:

The algebraic degree (deg(S)) of an S-box S to be the minimum of the degrees of all non-zero
linear combinations of its component functions:

deg(S)=min{deg(c1 f1 ⊕ c2 f2 ⊕ . . .⊕ cm fm)}

where c = (c1, c2, . . . , cm) ∈GF(2m)\{0}.

For example, the S-box used in PRESENT [2] is an 4-bit to 4-bit S-box. The action of this S-box
in hexadecimal notation is given by Table 1.

Table 1. The PRESENT S-box

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2
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The coordinate Boolean functions in the ANF form and their algebraic degree are presented in
Table 2 [10].

Table 2. The coordinate Boolean functions of PRESENT S-box

Boolean functions in ANF Algebraic degree
p1 = (0,1,0,0,1,0,1,0,1,0,0,0,0,0,0,0)
f1(x)= x0 ⊕ x2 ⊕ x1x2 ⊕ x3

2

p2 = (0,0,1,0,0,0,0,1,1,0,1,1,1,1,0,0)
f2(x)= x1 ⊕ x0x1x2 ⊕ x3 ⊕ x1x3 ⊕ x0x1x3 ⊕ x2x3 ⊕ x0x2x3

3

p2 = (1,0,0,1,1,0,0,0,1,1,1,1,0,1,0,0)
f3(x)= 1⊕ x0x1 ⊕ x2 ⊕ x3 ⊕ x0x3 ⊕ x1x3 ⊕ x0x1x3 ⊕ x0x2x3

3

p4 = (1,1,1,0,1,0,1,1,1,0,0,1,0,1,0,0)
f4(x)= 1⊕ x0 ⊕ x1 ⊕ x1x2 ⊕ x0x1x2 ⊕ x3 ⊕ x0x1x3 ⊕ x0x2x3

3

We computed all their linear combinations from these four original coordinate Boolean functions
of the S-box and determined algebraic degree of this S-box that is 2.

To convert a Boolean function as a truth table into the ANF, we can multiply the Hardamad
matrix with vector of Boolean function values. This method is described in detail in [17, 18, 8].

The Walsh-Hadamard transform (WHT) of an n-variable Boolean function f̂ (x), denoted by
F̂ f (w), is defined by:

F̂ f (w)= ∑
x∈GF(2n)

f̂ (x)(−1)〈w,x〉 = ∑
x∈GF(2n)

(−1) f (x)⊕〈w,x〉 = ∑
x∈GF(2n)

f̂ (x)l̂w(x),

where l̂w(x) is the signed function of the linear function lw(x)= 〈w, x〉.
Thus, for all w ∈GF(2n), F̂ f (w) ∈ [−2n,2n]. F̂ f (w) is called a spectral Walsh coefficient and the
real-valued vector of all 2n Walsh coefficients is referred to as the WHT Spectrum.

The autocorrelation transform (ACT) of f̂ (x), denoted by r̂ f (α), taken with respect to a
vector α ∈GF(2n) is defined by:

r̂ f (α)= ∑
x∈GF(2n)

(−1) f (x)⊕ f (x⊕α) = ∑
x∈GF(2n)

f̂ (x) f̂ (x⊕α).

Thus, for all α ∈ GF(2n), r̂ f (α) ∈ [−2n,2n] and r̂ f (0) = 2n. The r̂ f (α) is called a spectral
autocorrelation coefficient and the real-valued vector of all 2n autocorrelation coefficient
representing the ACT of function is referred to as the ACT Spectrum.

Nonlinearity: Let c = (c1, c2, . . . , cn) be a nonzero element in GF(2n). Let c ·S = c1 f1 ⊕ c2 f2 ⊕
. . .⊕ cn fn be a linear combination of the coordinate Boolean functions f1, f2, . . . , fn of S. The
nonlinearity (NL) for an S-box is defined as:

NL(S)= min
c∈GF(2n),c 6=0

NL(c ·S)

The NL of S is the Hamming distance between the set of all non-constraint linear combinations
of component functions of S and the set of all affine functions over GF(2).
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Differential Uniformity: The differential uniformity of an n× nS-box S, denoted by δ, is
defined as the largest value present in its difference distribution table (DDT) not counting the
first entry in the first row. That is,

δ= max
a∈GF(2n)\{0}

max
b∈GF(2n)

|{x ∈GF(2n)|S(x)⊕S(x⊕a)= b}|

Then, S is said to be differentially δ-uniform.

Fixed point: An element x ∈GF(2n) is a fixed point of S-box S : GF(2n)→GF(2m) if S(x)= x.

Opposite fixed point: An element x ∈GF(2n) is an opposite fixed point of S-box S : GF(2n)→
GF(2m) if S(x)= x̄.

According to [9], the S-box must not have fixed points and opposite fixed points.

Affine Equivalent: S-boxes are usually classified up to affine equivalence [1, 14, 13] since
many of the immortal cryptographic properties of S-boxes, such as nonlinearity, differential
uniformity, etc., are invariant under affine transformation.

Let S1 and S2 be n× n bit S-box. S1 and S2 are called affine equivalent if there exist two
invertible n×n matrixes A,B ∈GF(2), and constraints a,b ∈GF(2n) such that:

S2 = B(S1(A · x⊕a))⊕b (2.2)

3. Algorithm for Improving Algebraic Degree of S-box Coordinate
Boolean Functions

In this section, the new algorithm for improving algebraic degree of the S-box coordinate
Boolean functions is presented. The proposed algorithm is based on affine transformation as
presented by (2.2) and is described as follows:

Input: Original S-box (S1) with the coordinate Boolean functions that their algebraic degrees
are uneven.

Output: Affine equivalent S-box (S1), such that the algebraic degree of coordinate Boolean
functions described this S-box are uniform and higher.

Step 1: Represent n-Boolean functions of the S1 in the form of n-ANF polynomials {p1, p2, . . . , p}

correspondingly and determine polynomial, which have the greatest degree. (We will denote the
largest degree is MAXDEG.)

Step 2: Create a set Z consisting of all linear combinations and their inverse from n-original
polynomials {p1, p2, . . . , pn} of the S1.

Thus, the set Z will include 2(2n − 1) elements. They will in turn be assigned an index i
(i = 1 . . .2n −1), respectively. That mean:

Z = {zi|zi = i1 p1 ⊕ i2 p2 ⊕ . . .⊕ in pn}∪ {z2n−1+i = (1,0, . . . ,0)⊕ zi}

where i1, i2, . . . , in are bits of binary description of i.
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Then sort Z by deg(z j) where j = 1, . . . ,2(n+1)−1.

Step 3: Choose n linearly independent polynomials and their algebraic degree in MAXDEG
from the set Z.

3.1: Initial n zero vector: vk = 0, for all k = 1 . . .n.

3.2: Initial k = 1 (current index of selected vector), t = 1.

3.3: Determine vector zi ∈ Z, for all i = 1 . . .2(n+1)−1, such that deg(zi)= MAXDEG.

Assign zi ·a0 = t.

3.4: Assign vk = zi .

3.5: If i < 2n then compute:

k-th row of the matrix B : yk = i

and

k-th bit of binary vector b : bk = 0.

Else

k-th row of the matrix B : yk = i−2n

and

k-th bit of the binary vector b : bk = 1.

3.6: Delete vector vk = zi and its inverse, also all linear combination from k selected vectors
and their inverses.

• Linear combinations from k selected vectors and their inversions are computed as
follow:

for all m = (m1m2 . . .mk), 2k−1 ≤ m < 2k

x = m1v1 ⊕m2v2 ⊕ . . .⊕mkvk

w = x⊕ (1,0,0, . . . ,0)︸ ︷︷ ︸
2n−1

where w is the inverse of the x.
• Delete x, w from Z : Z = Z \{x,w}

3.7: k = k+1. If k < n then t = 0, else t = 1.

3.8: If k < n then go to step 3.3, else go to Step 4.

Step 4: Convert n selected polynomials in Step 3 to form of the Boolean functions in order to
receive the new S-box S2.

In this algorithm, after step 3, new S-box S2 will be created. In this process, n vectors
(zy1 , zy2 , . . . , zyn) are determined. In other words, index set (y1, y2, . . . , yn) of the component
Boolean functions is selected from the set of the all combination linear and their inversions,
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where yk ∈ {1,2, . . . ,2(2n −1)}, for all k = 1,2, . . . ,n, i.e. nonsingular matrix B and vector b have
been determined, such that:

S2 = BS1 +b (3.1)

and compared to S1, the coordinate Boolean functions of S2 have equal algebraic degrees and
are equal to MAXDEG, where

• S1 is the original S-box,

• B is the nonsingular matrix, which is defined as follow:

B =


y11 y12 . . . y1n
y21 y22 . . . y2n
. . . . . . . . . . . .
yn1 yn2 . . . ynn

 (3.2)

where (yi1, yi2, . . . , yin) is the binary representation of index yi , i = 1,2, . . . ,n, and the value
yi is determined in step 3.5,

• b = (b1,b2, . . . ,bn), where bi ∈GF(2), i = 1,2, . . . ,n. The values bi are determined in step
3.5 of this algorithm.

The (3.1) show that the new S-box (S2) and original S-box (S1) are affine equivalent by output.

4. Experimental Results
Applying the developed algorithm for S-box 4×4 in PRESENT (see Table 1), received results as
follows:
(1) A system of S-block Boolean functions is written in the form of a truth table. Then, by
multiplying a 2n ×2n Hadamard matrix for every Boolean function compute coefficients of the
ANFs recorded in the form of vectors {p1, p2, . . . , pn} as follows and MAXDEG = 3:

p1 : 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0
x0 ⊕ x2 ⊕ x1x2 ⊕ x3

p2 : 0 0 1 0 0 0 0 1 1 0 1 1 1 1 0 0
x1 ⊕ x0x1x2 ⊕ x3 ⊕ x1x3 ⊕ x0x1x3 ⊕ x2x3 ⊕ x0x2x3

p3 : 1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0
1⊕ x0x1 ⊕ x2 ⊕ x3 ⊕ x0x3 ⊕ x1x3 ⊕ x0x1x3 ⊕ x0x2x3

p4 : 1 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0
1⊕ x0 ⊕ x1 ⊕ x1x2 ⊕ x0x1x2 ⊕ x3 ⊕ x0x1x3 ⊕ x0x2x3

(2) The set received Z is showed in Table 3.

Table 3. The set Z computed and sorted by proposed algorithm

i Coefficient vectors and corresponding polynomials of ANF (zi) deg
30 z30 1 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0

1⊕ x0x1 ⊕ x0x3 ⊕ x0x1x3 ⊕ x2x3 ⊕ x0x2x3

3

(Contd.)
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i Coefficient vectors and corresponding polynomials of ANF (zi) deg
15 z15 0 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0

x0x1 ⊕ x0x3 ⊕ x0x1x3 ⊕ x2x3 ⊕ x0x2x3

3

29 z29 1 1 0 1 1 0 1 0 1 1 0 1 1 1 0 0
1⊕ x0 ⊕ x0x1 ⊕ x2 ⊕ x1x2 ⊕ x3 ⊕ x0x3 ⊕ x0x1x3 ⊕ x2x3 ⊕ x0x2x3

3

14 z14 0 1 0 1 1 0 1 0 1 1 0 1 1 1 0 0
x0 ⊕ x0x1 ⊕ x2 ⊕ x1x2 ⊕ x3 ⊕ x0x3 ⊕ x0x1x3 ⊕ x2x3 ⊕ x0x2x3

3

28 z28 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0
1⊕ x1 ⊕ x0x1 ⊕ x0x1x2 ⊕ x3 ⊕ x0x3 ⊕ x1x3

3

13 z13 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0
x1 ⊕ x0x1 ⊕ x0x1x2 ⊕ x3 ⊕ x0x3 ⊕ x1x3

3

27 z27 1 1 1 1 1 0 1 1 0 1 1 0 0 0 0 0
1⊕ x0 ⊕ x1 ⊕ x0x1 ⊕ x2 ⊕ x1x2 ⊕ x0x1x2 ⊕ x0x3 ⊕ x1x3

3

12 z12 0 1 1 1 1 0 1 1 0 1 1 0 0 0 0 0
x0 ⊕ x1 ⊕ x0x1 ⊕ x2 ⊕ x1x2 ⊕ x0x1x2 ⊕ x0x3 ⊕ x1x3

3

24 z24 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0
x1 ⊕ x2 ⊕ x0x1x2 ⊕ x0x1x3 ⊕ x0x2x3

3

9 z9 1 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0
1⊕ x1 ⊕ x2 ⊕ x0x1x2 ⊕ x0x1x3 ⊕ x0x2x3

3

23 z23 0 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0
x0 ⊕ x1 ⊕ x1x2 ⊕ x0x1x2 ⊕ x3 ⊕ x0x1x3 ⊕ x0x2x3

3

8 z8 1 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0
1⊕ x0 ⊕ x1 ⊕ x1x2 ⊕ x0x1x2 ⊕ x3 ⊕ x0x1x3 ⊕ x0x2x3

3

22 z22 0 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0
x0 ⊕ x1 ⊕ x0x1 ⊕ x1x2 ⊕ x0x1x2 ⊕ x3 ⊕ x0x3 ⊕ x2x3

3

7 z7 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0
1⊕ x0 ⊕ x1 ⊕ x0x1 ⊕ x1x2 ⊕ x0x1x2 ⊕ x3 ⊕ x0x3 ⊕ x2x3

3

21 z21 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 0
x1 ⊕ x0x1 ⊕ x2 ⊕ x0x1x3 ⊕ x0x3 ⊕ x2x3

3

6 z6 1 0 1 1 1 0 0 1 0 1 0 0 1 0 0 0
1⊕ x1 ⊕ x0x1 ⊕ x2 ⊕ x0x1x3 ⊕ x0x3 ⊕ x2x3

3

20 z20 0 1 0 1 0 0 1 0 0 1 1 1 0 1 0 0
x0 ⊕ x0x1 ⊕ x1x2 ⊕ x0x3 ⊕ x1x3 ⊕ x0x1x3 ⊕ x0x2x3

3

5 z5 1 1 0 1 0 0 1 0 0 1 1 1 0 1 0 0
1⊕ x0 ⊕ x0x1 ⊕ x1x2 ⊕ x0x3 ⊕ x1x3 ⊕ x0x1x3 ⊕ x0x2x3

3

19 z19 0 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0
x0x1 ⊕ x2 ⊕ x3 ⊕ x0x3 ⊕ x1x3 ⊕ x0x1x3 ⊕ x0x2x3

3

4 z4 1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0
1⊕ x0x1 ⊕ x2 ⊕ x3 ⊕ x0x3 ⊕ x1x3 ⊕ x0x1x3 ⊕ x0x2x3

3

18 z18 1 1 1 0 1 0 1 1 0 0 1 1 1 1 0 0
1⊕ x0 ⊕ x1 ⊕ x1x2 ⊕ x0x1x2 ⊕ x3 ⊕ x0x1x3 ⊕ x0x2x3

3

3 z3 0 1 1 0 1 0 1 1 0 0 1 1 1 1 0 0
x0 ⊕ x1 ⊕ x1x2 ⊕ x0x1x2 ⊕ x3 ⊕ x0x1x3 ⊕ x0x2x3

3

17 z17 1 0 1 0 0 0 0 1 1 0 1 1 1 1 0 0
1⊕ x1 ⊕ x0x1x2 ⊕ x3 ⊕ x1x3 ⊕ x0x1x3 ⊕ x2x3 ⊕ x0x2x3

3

(Contd.)
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i Coefficient vectors and corresponding polynomials of ANF (zi) deg
2 z2 0 0 1 0 0 0 0 1 1 0 1 1 1 1 0 0

x1 ⊕ x0x1x2 ⊕ x3 ⊕ x1x3 ⊕ x0x1x3 ⊕ x2x3 ⊕ x0x2x3

3

26 z26 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0
x2 ⊕ x3 ⊕ x1x3 ⊕ x2x3

2

11 z11 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0
1⊕ x2 ⊕ x3 ⊕ x1x3 ⊕ x2x3

2

25 z25 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0
x0 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3

2

10 z10 1 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0
1⊕ x0 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3

2

16 z16 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0
1⊕ x0 ⊕ x2 ⊕ x1x2 ⊕ x3

2

1 z1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0
x0 ⊕ x2 ⊕ x1x2 ⊕ x3

2

(3) Determine n-polynomials, their algebraic degree is 3. T he corresponding indexes of these
polynomials are: 30, 14, 13, 9. It means that we determined the matrix B and the vector bof the
affine equivalent transformation as follows:

B =


1 1 1 1
0 1 1 1
1 0 1 1
1 0 0 1


and vector b

b =


1
0
0
0

 .

The received S-box as in Table 4:

Table 4. New affine equivalence S-box (S2)

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S2(x) 8 C B 1 D 9 A 3 E 4 F 6 7 0 2 5

The Boolean functions in ANF of this S-box are presented in Table 5.
The coordinate Boolean functions of S2 in ANF Algebraic degree.

Table 5. Analysis of coordinate Boolean functions of the affine equivalence S-box (S2)

f1(x)= 1⊕ x1 ⊕ x2 ⊕ x0x1x2 ⊕ x0x1x3 ⊕ x0x2x3 3
f2(x)= x1 ⊕ x0x1 ⊕ x0x1x2 ⊕ x3 ⊕ x0x3 ⊕ x1x3 3
f3(x)= x0 ⊕ x0x1 ⊕ x2 ⊕ x1x2 ⊕ x3 ⊕ x0x3 ⊕ x0x1x3 ⊕ x2x3 ⊕ x0x2x3 3
f4(x)= 1⊕ x0x1 ⊕ x0x3 ⊕ x0x1x3 ⊕ x2x3 ⊕ x0x2x3 3
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Obviously, the algebraic degrees of all Boolean functions of the received S-box are 3. The
comparison of the some cryptography properties of the S-boxes S1 and S2 is presented in
Table 6.

Table 6. The comparison of the cryptography properties of S-boxes

Property S1 S2

Nonlinearity 4 4
Differential uniformity 4 4
Linear Approximation 4 4
Number of fixed points 0 0
Number of opposite fixed points 1 0
Number of coordinate Boolean functions with algebraic degree 2 1 0
Number of coordinate Boolean functions with algebraic degree 3 3 4

The comparison of the some cryptography properties of the coordinate Boolean functions of
S-boxes S1 and S2 is presented in Table 7.

Table 7. The comparison of the some cryptography properties of the coordinate Boolean functions

The coordinate Boolean functions S1 S2

Property f1 f2 f3 f4 f1 f2 f3 f4

Nonlinearity 4 4 4 4 4 4 4 4
Algebraic degree 2 3 3 3 3 3 3 3
Number of nonzero spectral Walsh coefficients 4 10 10 10 10 10 10 10
Number of nonzero spectral AC coefficients 4 7 7 7 7 7 7 7

5. Conclusion
In this paper we presented an algorithm, it allows to improve the algebraic degree of the S-box
coordinate Boolean functions from applying affine equivalence transformation. By using the
proposed algorithm, can create a new affine equivalent S-box with higher and more evenly
algebraic degree of the coordinate Boolean functions, which may improve the ability to resist
many attacks, for instance higher-order differential attacks, algebraic attacks or cube attacks.
In addition to improved algebraic degree, other criteria of the S-box (for example,number of
fixed points, number of opposite fixed points, number of nonzero spectral Walsh coefficients and
number of nonzero spectral AC coefficients) can be added to this algorithm to further enhance
the safety of the block cipher.
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