Journal of Informatics and Mathematical Sciences Volume 3 (2011), Number 3, pp. 287–290 © RGN Publications

Remark on a Theorem of Prolla

Zoran D. Mitrović

Abstract. In this paper, we obtained the form of the best approximation theorem of Prolla. Our result extends some results in literature.

1. Introduction and Preliminaries

In 1969, Ky Fan [2] established the famous best approximation theorem.

Theorem 1.1 (Ky Fan, [2]). Let *C* be a nonempty, compact, convex subset of a normed linear space *X*. Then for any continuous mapping *f* from *C* to *X*, exists a point $x_0 \in C$ with

$$||x_0 - f(x_0)|| = \inf_{x \in C} ||x - f(x_0)||.$$

This result has been generalized to other spaces X and other types of maps, see for example [4], [5], [7]. Prolla [6] and Carbone [1] obtained a form of the best approximation theorem of Ky Fan using almost affine and almost quasi-convex maps in normed vector spaces.

Definition 1.2. Let *X* be a normed space and *C* a nonempty convex subset of *X*.

(i) A map $g : C \to X$ is almost affine if for all $x, y \in C$ and $u \in C$

$$||g(\lambda x + (1 - \lambda)y) - u|| \le \lambda ||g(x) - u|| + (1 - \lambda) ||g(y) - u||,$$

for each λ with $0 < \lambda < 1$.

(ii) A map $g : C \to X$ is almost quasi-convex if for all $x, y \in C$ and $u \in C$

 $||g(\lambda x + (1 - \lambda)y) - u|| \le \max\{||g(x) - u||, ||g(y) - u||\}$

for each λ with $0 < \lambda < 1$.

²⁰⁰⁰ Mathematics Subject Classification. 47H10.

Key words and phrases. KKM map; Best approximations.

Theorem 1.3 (J.B. Prolla, [6]). Let X be a normed linear space, C a nonempty convex compact subset of X, $f : C \to X$ is a continuous map and $g : C \to C$ is a continuous, almost affine, onto map. Then there exists a point $x_0 \in C$, such that

 $||g(x_0) - f(x_0)|| = \inf_{x \in C} ||x - f(x_0)||.$

Carbone [1] obtain the version of Theorem 1.3 using almost quasi-convex maps. We extended results of Prolla [6] and Carbone [1].

For a nonempty subset A of X, let co A denote the convex hull of A.

Definition 1.4. Let *C* be a nonempty subset of a topological vector space *X*. A map $H : C \to 2^X$ is called KKM map if for every finite set $\{x_1, \ldots, x_n\} \subset C$, we have

$$\operatorname{co} \{x_1,\ldots,x_n\} \subseteq \bigcup_{k=1}^n H(x_k).$$

The following extension of the classical KKM principle is due to Ky Fan [3].

Theorem 1.5. [3] Let X be a topological vector space, K be a nonempty subset of X and $H : K \to 2^X$ a map with closed values and KKM map. If H(x) is compact for at least one $x \in K$ then $\bigcap_{x \in X} H(x) \neq \emptyset$.

2. Main Result

From Theorem 1.5 we obtain the following best approximation theorem in normed spaces.

Theorem 2.1. Let X be a normed linear space, C a nonempty convex compact subset of X, $f : C \to X$ and $g : C \to C$ continuous maps. If there exists an almost quasiconvex onto map $h : C \to C$ such that

$$||g(x) - f(x)|| \le ||h(x) - f(x)|| \quad \text{for each } x \in C,$$
(2.1)

then there exists a point $x_0 \in C$ such that

$$||g(x_0) - f(x_0)|| = \inf_{x \in C} ||x - f(x_0)||.$$

Proof. Let for every $y \in C$, $H: C \to 2^C$ be defined by

$$H(y) = \{x \in C : ||g(x) - f(x)|| \le ||h(y) - f(x)||\}.$$

We have that H(y) is nonempty for all $y \in C$, because $y \in H(y)$ for all $y \in C$. Since f and g are continuous maps, then H(y) is closed for all $y \in C$. Now, we show that for each finite set $\{x_1, \ldots, x_n\} \subset C$,

$$\operatorname{co}\left\{x_{1},\ldots,x_{n}\right\} \subseteq \bigcup_{k=1}^{n} H(x_{k}).$$

$$(2.2)$$

288

Suppose that

$$\operatorname{co} \{x_1, \dots, x_n\} \nsubseteq \bigcup_{k=1}^n H(x_k) \text{ for some } \{x_1, \dots, x_n\} \subset C.$$

Then there exists $y_0 \in co \{x_1, ..., x_n\}$ such that $y_0 \notin H(x_k)$ for each $k \in \{1, ..., n\}$. So, we have

$$||g(y_0) - f(y_0)|| > ||h(x_k) - f(y_0)||$$
 for each $k \in \{1, ..., n\}$.

Therefore,

$$||g(y_0) - f(y_0)|| > \max_k ||h(x_k) - f(y_0)|| \ge ||h(y_0) - f(y_0)||.$$

This is a contradiction with condition (2.1). Hence, condition (2.2) is true for each finite $\{x_1, \ldots, x_n\} \subset C$ and a map *H* is KKM map. Now, from Theorem 1.5 it follows that there exists $y_0 \in C$ such that

$$y_0 \in \bigcap_{y \in C} H(y).$$

Therefore,

$$\|g(y_0) - f(y_0)\| = \inf_{x \in C} \|x - f(y_0)\|.$$

Example 2.2. Let C = [0, 1] and define maps $f, g, h : C \rightarrow C$ by

$$f(x) = 0,$$

$$h(x) = x,$$

$$g(x) = \begin{cases} x, & x \in \left[0, \frac{1}{4}\right]; \\ -x + \frac{1}{2}, & x \in \left[\frac{1}{4}, \frac{1}{2}\right]; \\ 2x - 1, & x \in \left[\frac{1}{2}, 1\right]. \end{cases}$$

Then map g is not almost quasi-convex and results of J.B. Prolla and A. Carbone are not applicable. Note that the maps f, g and h satisfy all hypotheses of Theorem 2.1.

References

- [1] A. Carbone, A note on a theorem of Prolla, *Indian J. Pure. Appl. Math.* 23, 257–260 (1991).
- [2] K. Fan, Extensions of two fixed point theorems of F.E. Browder, *Math. Zeit.* **112**, 234–240 (1969).
- [3] K. Fan, A generalization of Tychonoff's fixed point Theorem, *Math. Ann.* 142, 305–310 (1961).
- [4] W.A. Kirk and B. Panyanak, Best approximation in ℝ-trees, Numer. Funct. Anal. & Optim. 28, 681–690 (2007).
- [5] M.A. Khamsi, KKM and Ky Fan Theorems in hyperconvex metric spaces, *J. Math. Anal. Appl.* **204**, 298–306 (1996).

Zoran D. Mitrović

- [6] J.B. Prolla, Fixed point theorems for set-valued mappings and existence of best approximations, *Numer. Funct. Anal. & Optim.* **5**, 449–455 (1983).
- [7] S. Singh, B. Watson and P. Srivastava, *Fixed Point Theory and Best Approximation: The KKM-map Principle*, Kluwer Academic Press (1997).

Zoran D. Mitrović, Faculty of Electrical Engineering, University of Banja Luka, 78000 Banja Luka, Patre 5, Bosnia and Herzegovina. E-mail: zmitrovic@etfbl.net

Received May 19, 2011 Accepted August 18, 2011

290