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Abstract. A group G is covered by a collection of its proper subgroups if it is equal to the union of
the collection. A covering is called irredundant if it has no proper sub-collection which also covers G.
A covering of G in which all members are maximal subgroups is called maximal. For any integer
n > 2, a covering with n members is called an n-covering. We call the covering of G as Cn-covering
if it is an irredundant maximal n-covering with core free intersection for G, and we call a group G
a Cn-group if G admits a Cn-covering. In this paper, we completely characterize 7-groups having a
maximal irredundant 12-covering with core-free intersection. From our results, it is proven that a
group G is a 7-group having C12-covering if and only if G ∼= (C7)3.
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1. Introduction

Let G be a finite group. If G is non-cyclic, then G can be obtained as a union of its proper
subgroups. A covering C of a group G is a collection of proper subgroups of G whose union is
the whole group G. We use the term n-covering for C with n members.

A covering C of G is irredundant if no proper sub-collection is also a covering for G, and is
called maximal if all of its members are maximal subgroups of G. We denote the intersection of
members of a maximal covering by D. A covering C of G is called core-free if the intersection
D = ⋂

M∈C
M of C is core-free in G, i.e. DG = ⋂

g∈G
g−1D g is the trivial subgroup of G. The covering

C of G is called a Cn-covering whenever C is an irredundant maximal core-free n-covering
for G. We say a group G is a n-group if G admits Cn-covering.

It is well known that there is no group that can be covered by two proper subgroups. Scorza [8]
was the first to determine the structure of all groups having an irredundant 3-covering with
core-free intersection.

Theorem 1.1 (See [8]). Let {A i | 1≤ i ≤ m} be an irredundant covering with core-free intersection
D for a group G. Then, D = 1 and G ∼= C2 ×C2 .

In [7], Greco listed all groups with an irredundant 4-covering with core-free intersection.
Also, he listed all groups with an irredundant 5-covering in which all pairwise intersection are
the same. Then, in [11], Bryce et al. characterized groups with maximal irredundant 5-covering
with core-free intersection completely. Specially they proved that G is a p-group if and only if G
is an elementary abelian of order 16.

Abdollahi et al. [3] characterized groups with maximal irredundant 6-covering with core-
free intersection. In [4], Abdollahi and Amiri listed all groups having a maximal irredundant
7-covering with core-free intersection. Ataei and Sajjad [10] characterized 5-groups with a
maximal irredundant 10-covering with core-free intersection. But their result is excluded for
|G| = 54. All of the above results are characterized without appealing to the theory of blocking
sets.

Let n be a positive integer. We denote the n-dimensional projective space over the finite
field Fq of order q by PG(n, q). A hyperplane of PG(n, q) is a subspace of PG(n, q) having
(n−1)-dimension. A blocking set in PG(n, q) is a set B of points of PG(n, q) that has non-empty
intersection with every hyperplane. A blocking set that contains a line is called trivial. We say
that a blocking set is minimal if none of its proper subsets are also blocking sets. For a blocking
set B, we denote the least positive integer d such that B is contained in a d-dimensional
subspace of PG(n, q) by d(B). Thus d(B) is equal to the (projective) dimension of subspace
spanned by B in PG(n, q).
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Abdollahi [1] and Abdollahi et al. [2] gave some results which clarify the relations between
non-trivial minimal blocking sets of size n and Cn-coverings for groups. They characterized
p-groups satisfying Cn-groups for n ∈ {7,8,9} completely. Their results were derived from the
theory of blocking sets. In [9], Ataei characterized nilpotent groups with C8-coverings.

Here, we give a complete characterization of 7-groups having C12-coverings.

2. Preliminaries

We quote the following propositions and lemmas that will be used in the proof later.

Proposition 2.1 (See [6]). Let B be a minimal blocking set in PG(2,7), with |B| = n. Then
12≤ n ≤ 19 (example of each possible cardinality exist and there are exactly two of size 12).

Proposition 2.2 (See [5]). Let p be an odd prime, then |B| ≥ 3
2 (p+1) for the size of a non-trivial

blocking set in PG(2, p).

Proposition 2.3 ( [12, Theorem 1.4]). Let B be a minimal blocking set in PG(3, q) with p > 3
prime of size at most 3(p+1)

2 +1 is contained in a plane.

Proposition 2.4 ( [2, Proposition 2.6]). Let p be a prime number and n be a positive integer.
Then a finite p-group G is a Cn-group if and only if G ∼= (Cp)m+1 for some positive integer m
such that PG(m, p) has a minimal blocking set B with d(B)= m and |B| = n.

Lemma 2.5 ( [2, Lemma 3.2]). Let G be a finite p-group having a Cn-covering {Mi | i = 1, . . . ,n}.
Then

(a) p ≤ n−1.

(b) If s the integer such 1≤ s ≤ n−2 and p = n−s, then
⋂

i∈S
Mi = 1 for every subset S of {1,2, . . . ,n}

with |S| ≥ s+1.

(c) If n = p+1, then G ∼= (Cp)2.

Lemma 2.6 ( [2, Lemma 3.3]). Let G = (Cp)d for d ≥ 2 and p is a prime number. Suppose that
G has Cn-coverings {Mi | i = 1, . . . ,n}. Let T ⊆ {1,2, . . . ,n}.

(a) If |T| = n− p, then
∣∣∣ ⋂

i∈T
Mi

∣∣∣= 1 or p.

(b) If |T| = 2, then
∣∣∣ ⋂

i∈T
Mi

∣∣∣= pd−2.

(c)
⋂

i∈S
Mi = 1 for some T of size d.

(d) If
⋂

i∈S
Mi = 1 whenever |S| = d, then p ≤

∣∣∣ ⋂
i∈T

Mi

∣∣∣≤ n−d+1 whenever |T| = d−1.
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3. 7-Groups with a C12-Covering

In this section, we characterized 7-groups satisfying C12-groups.

Theorem 3.1. Let G be a 7-group. Then G is a C12-group, if and only if G ∼= (C7)3.

Proof. Suppose that G is a 7-group. Since the Frattini subgroups of G, φ(G) = G′G7 ≤ D, we
have D is a normal subgroup of G. Therefore D = 1 and G is an elementary abelian 7-group.
By Lemma 2.6(b), we have

|G : Mi ∩M j| = 72 for distinct i, j ∈ [12]. (3.1)

Now, from Lemma 2.5(b) we have that

for every S ⊆ [12] such that |S| ≥ 12−7+1= 6,
⋂
i∈S

Mi = 1. (3.2)

Therefore |G| ≤ 76. Also |G| ≥ 73, since otherwise G would not have twelve distinct maximal
subgroups (|G| = 72 has only eight maximal subgroups). Then, Proposition 2.3 implies the
non-existence of C12-covering for (C7)4.

Assume |G| = 73, so that G ∼= (C7)3. Proposition 2.1 and Proposition 2.2 imply that there
exists a blocking set of size 12. Then, Proposition 2.4 implies that (C7)3 is a C12-group. In fact if
G = 〈a,b, c〉, we obtained by GAP[13] that the set

F = {〈b, c〉,〈a, c〉,〈a,b〉,〈a,bc〉,〈a5b, c〉,〈a5c,b〉,〈a,b4c〉,〈a5b,ac〉,〈a4b,a5c〉,

〈a3b,a2c〉,〈a,b5c〉,〈a4b,ac〉}

of maximal subgroups forms a C12-covering for G.

Now, let |G| = 75. Then Lemma 2.6 implies that
∣∣∣ ⋂

i∈T
Mi

∣∣∣ = 1 for at least one T ∈ [12]5.

Therefore, we assume that there exist S ∈ [12]5 such that
∣∣∣ ⋂

i∈S
Mi

∣∣∣ = 1. Since, the covering is

irredundant, therefore there exist j ∈ [12] such that for all L ∈ [12]5, N = ⋂
i∈L

Mi � M j . Therefore,

75 = |G| =
∣∣∣G :

6⋂
i∈1

Mi

∣∣∣= |G : N| |G : M j| = |G : N|7, |G : N| = 74, |N| = 7, which is a contradiction

by
∣∣∣ 5⋃

i=1
Mi

∣∣∣= 1.

Then, we assume that |G| = 76. Lemma 2.6(d) implies that∣∣∣ ⋂
i∈T

Mi

∣∣∣= 7 for every T ∈ [12]5 . (3.3)

Then by (3.1) we have that |Mi∩M j| = 74 for distinct i, j ∈ [12] and so for every K ∈ [12]3, we have∣∣∣ ⋂
i∈K

Mi

∣∣∣= 73 or 74. Now we prove that
∣∣∣ ⋂

i∈K
Mi

∣∣∣= 73 for all K ∈ [12]3. Suppose for contradiction,
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that there exist L ∈ [12]3 such that
∣∣∣ ⋂

i∈L
Mi

∣∣∣ = 74. Let L′ ∈ [12]3 such that L∩L′ = φ. Then it

follows from (3.1) and (3.2) that
∣∣∣ ⋂

i∈L
⋃

L′′
Mi

∣∣∣= ∣∣∣ ⋂
i∈L′⋃L′′

Mi

∣∣∣= 1 for every L′′ is a proper subgroup

of L of size 2. Since |L′′∪L′| = 5, it follows that |G| ≤ 75, which is a contradiction. Therefore, we
conclude ∣∣∣ ⋂

i∈K
Mi

∣∣∣= 35 for all K ∈ [12]3 . (3.4)

By (3.1), we have
∣∣∣ ⋂

i∈T
Mi

∣∣∣ ∈ {72,73} for all T ∈ [12]4, we prove that
∣∣∣ ⋂

i∈T
Mi

∣∣∣ = 72 for all

T ∈ [12]4. Suppose for a contradiction, that there exists L ∈ [12]4 such that
∣∣∣ ⋂

i∈L
Mi

∣∣∣ = 73. Let

L′ ∈ [12]2 such that L∩L′ = φ. Then (3.1) and (3.3) imply that
∣∣∣ ⋂

i∈L
⋃

L′′
Mi

∣∣∣ = ∣∣∣ ⋂
i∈L′⋃L′′

Mi

∣∣∣ = 1

for every L′′ ⊂ L of size 3. Since |L′′∪L′| = 5, it follows that |G| ≤ 75, which is a contradiction.
Therefore ∣∣∣ ⋂

i∈T
Mi

∣∣∣= 72 for all T ∈ [12]4 . (3.5)

Now using (3.1) until (3.5), it follows from the inclusion-exclusion principle that
∣∣∣ 12⋃

i=1
Mi

∣∣∣ =(12
1

)
75 − (12

2

)
74 + (12

3

)
73 − (12

4

)
72 + (12

5

)
7− (12

6

)+ (12
7

)− (12
8

)+ (12
9

)− (12
10

)+ (12
11

)− (12
12

) = 99505, which is
not 76, the final contradiction.

4. Conclusion

The only 7-group that can be covered by twelve irredundant maximal subgroups with
core-free intersection is C7 × C7 × C7. By using GAP[13] we obtain that if C7 × C7 × C7 =
〈a,b, c〉, then the set F = {〈b, c〉,〈a, c〉,〈a,b〉,〈a,bc〉,〈a5b, c〉,〈a5c,b〉,〈a,b4c〉,〈a5b,ac〉,〈a4b,a5c〉,
〈a3b,a2c〉,〈a,b5c〉,〈a4b,ac〉} is one of the collections of maximal subgroups of C7 ×C7 ×C7 that
satisfy the C12-covering.
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