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Statistical Techniques for Microarray Technology

Bindu Punathumparambath, Sebastian George, and Kannan V.M.

Abstract. Microarray technology enable researchers to measure the expression
levels for thousands of genes simultaneously. This paper describes the microarray
technology and general methodology for the analysis of differential gene
expression data from microarray experiments. First, we will provide a review
of basic microarray concepts and an overview of some of the major statistical
developments in microarray data analysis. In this work, we propose the two
component Mixed Gaussian distribution as an approximation for the log-ratios
of the measured gene expression across genes.

1. Introduction

Microarray technology developed in early 1990s facilitated measuring the
expression level of thousands of genes in parallel. For thorough understanding of
the data coming from microarray experiments, it is essential to have the knowledge
of underlying biology and the setup of microarray experiment. Scientist in the
computational and biological sciences together with significant contribution from
statisticians are working on analysis and interpretation of huge data on gene
expression levels.

Depending on the type of molecules used, microarrays are classified into
different categories like cDNA microarray, protein microarray, antibody microarray
etc. Microarrays are used for many purposes. In gene expression analysis the
expression levels of genes of the test sample is compared with that of control
sample. This is the most widely used type of microarray and is used to identify
genes overexpressed or underexpressed in tissues from a patient to that of normal
tissue. This will help in identifying genes related to the disease and those genes
can be targeted for developing new therapeutics or for diagnosis/prognosis of the
disease. In mutation analysis single base changes (single nucleotide polymorphism,
SNP) in a sequence is analyzed. Single Nucleotide Polymorphisms are increasingly
being implicated in drug reactions.
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One of the important problems to be addressed in analysis of microarray data
is the identification of differentially expressed gene for further investigation. Fold
change is the simplest method for identifying differentially expressed genes (De
Risi et al. [11] and Eisen et al. [16]. It is based on the observed ratio (or average
of ratios) between two conditions. An arbitrary cut-off value (for example, 2 fold)
is used to identify differentially expressed genes. The standard-t-test is usually
used to identify significantly differentially expressed genes across two conditions,
which assumes normally distributed data and equal variance within classes. Welch
statistics for unequal variances, Wilcoxon nonparametric test, permutation test,
penalized t-statistics, significance analysis of microarrays (SAM) (Tusher et al.
[32]), regularized t-test (Cyber-T) (Baldi and Long [1]) and moderated t-statistics
(Smyth [28]) are also applied for identifying differentially expressed genes in two
conditions.

Potential applications of microarray technology are (1) Identification of
change in expression of genes over time, between tissues, and disease states.
(2) Identification of complex genetic diseases, drug discovery, toxicology studies,
mutation/polymorphism detection (SNP’s), and pathogen analysis, etc. Microarray
methods were applied initially to disease states such as tumour classification but
increasingly beeing applied to behavioural and pharmacological problems such
as addiction and mental illness. Therefore, it is important that biologists and
psychologists who study behaviour understand the technology and the types of
issues involved in the analysis of data.

The paper is organized as follows. The cDNA microarray protocol is given
in section 2. The summary of data pre-processing methods for the microarray
experimental data are presented in section 3. In section 4 we discuss various
classification tools. Various clustering algorithms are discussed in section 5.
Different methods of analysis of comparative experiments for identifying the
differential expression of the genes are discussed in section 6. Application of mixed
Gaussian distribution is illustrated in section 7. Finally, we summarize in section 8.

2. cDNA Microarray

DNA microarray is a very powerful technology that measure the expression
levels of thousands of genes in parallel. A cDNA microarray is a glass slide, to
which single-stranded DNA molecules are attached at fixed locations (spots). DNA
microarrays can be used to detect DNA (as in comparative genomic hybridization),
or detect RNA (most commonly as cDNA after reverse transcription). The process
of measuring gene expression via cDNA is called expression analysis or expression
profiling. DNA microarray, or DNA chips are fabricated by high-speed robotics,
generally on glass but sometimes on nylon substrates, thus allowing massively
parallel gene expression and gene discovery studies. An experiment with a
single DNA chip can provide researchers information on thousands of genes
simultaneously.
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Gene chips are usually categorized into one of two classes, based on
the DNA actually arranged onto a support. An Oligo array is comprised of
synthesized oligonucleotides, where a cDNA array contains cloned or PCR
amplified complimentary DNA molecules. The purpose of either type of array is
the same, specifically, to profile changes in the expression levels of many genes in
a single experiment. Unlike oligonucleotide arrays, cDNA arrays contain longer
cloned or PCR amplified cDNA and often the length of the cDNA species arranged
onto a cDNA array varies considerably.

Also there are two types of microarrays depending on the number of channels
or coloured dyes used. They are single channel microarrays or one colour
microarrays and two-color microarrays or two-channel microarrays. In single-
channel microarrays or one-color microarrays, the arrays are designed to give
estimations of the absolute levels of gene expression. Therefore the comparison
of two conditions requires two separate single-dye hybridization experiments. As
only a single dye is used, the data collected represent absolute values of gene
expression. These may be compared to other genes within a sample or to reference
“normalizing" probes used to calibrate data across the entire array and across
multiple arrays.

Two-color microarrays or two-channel microarrays are typically hybridized
with cDNA prepared from two samples to be compared (e.g. diseased tissue
versus control tissue) and that are labeled with two different fluorophores.
Fluorescent dyes commonly used for cDNA labelling include Cy3, which has a
fluorescence emission wavelength of 570 nm (corresponding to the green part
of the light spectrum), and Cy5 with a fluorescence emission wavelength of 670
nm (corresponding to the red part of the light spectrum). The green and red
colour dye-labelled cDNA samples are mixed and hybridized to a single microarray
that is then scanned in a microarray scanner to visualize fluorescence of the two
fluorophores after excitation with a laser beam of a defined wavelength. Relative
intensities of each fluorophore may then be used in ratio-based analysis to identify
up-regulated and down-regulated genes.

2.1. The cDNA Microarray Protocol

2.1.1. Principle of cDNA microarray experiments. The whole process is based on
hybridization probing, a technique that uses fluorescently labeled nucleic acid
molecules to identify complementary molecules, sequences that are able to base-
pair with one another. Each single-stranded DNA fragment is made up of four
different nucleotides, adenine (A), thymine (T), guanine (G), and cytosine (C),
that are linked end to end. Adenine is the complement of, or will always
pair with, thymine, and guanine is the complement of cytosine. Therefore, the
complementary sequence to 5′-G-T-C-C-T-A-3′ will be 3′-C-A-G-G-A-T-5′. When two
complementary sequences find each other, such as the immobilized probe DNA and
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the mobile target DNA, cDNA, or mRNA, they will lock together, or hybridize. In
this paper ‘probe’ refers to the DNA attached on to the glass slide and ‘target’ refers
to the labelled DNA in solution.

2.1.2. Preparing probe DNA samples for spotting. Polymerase Chain Reaction (PCR)
is used to amplify the gene or DNA. This probe DNA is attached to the glass slide.
Microarrays spot probe DNA samples on a solid substrate, usually a glass slide,
onto which thousands of spots of single-stranded DNA, in the form of cDNAs or
oligonucleotide, are placed by a robot arrayer using contact or non contact printing
methods.

2.1.3. Preparation of target DNA. RNA from tissues is prepared using standard
protocols and mRNA isolated. cDNA synthesis from the mRNA is achieved by
reverse transcription using reverse transcriptase enzyme. It is at this stage that a
tag, a fluoresecently labeled nucleotide, is incorporated in the synthesized cDNA.
mRNA can also be directly labeled and used in microarray.

2.1.4. Hybridization of the target with the probe sequence on the array. From
control and test samples tissues cDNA or RNA is made and labeled with two
fluorescent labels. For example, a red dye for RNA from the sample population
and a green dye for that from the control population. Both extracts are mixed and
washed over the microarray. Gene sequences from the extracts hybridize to their
complementary sequences on the spots. If the RNA from the sample population is
in abundance, the spot will be red; if the RNA from the control population is in
abundance, the spot will be green; if sample and control bind equally, the spot will
be yellow; if neither binds, the spot will appear black. Thus, the relative expression
levels of the genes in the sample and in control populations can be estimated from
the fluorescence intensities and colours of each spot.

2.1.5. Detection of bound probe using laser. For detection of the bound probe the
spot is exposed to laser to excite the fluorescent dyes on the sample, then collect
emitted light, and generate digital images of the fluorescent signal. Two general
methods are used to acquire such images: laser excitation with a photomultiplier
tube (PMT) detector, and filtered white-light excitation with a charge-coupled
device (CCD) detector.

2.1.6. Image analysis. The raw data produced by microarray are in fact
monochrome images. Transforming these images into gene expression matrix is a
non-trivial process: the spots corresponding to genes on the microarray should be
identified, their boundaries determined, the fluorescence intensity from each spot
measured and compared to the background intensity and to these intensities for
other channels. The software for this initial image processing is often provided
with the image scanner, since it will depend on particular properties of the
hardware. The ultimate goal of the image analysis is to automatically quantify
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every individual array element (spot), providing information about the amount of
DNA or RNA bound to a spot. The quality of image analysis process is crucial for
accurate interpretation of data. Variety of algorithms and softwares are available,
such as DeArray, ScanAlyze and CrazyQuant for the analysis.

Image analysis is an important aspect of microarray experiments. The main
steps in the image analysis are gridding (spot recognition), segmentation and
intensity extraction. Gridding is the process used to identify each spot on the array
prior to extracting the information from it. The segmentation is the process of
extracting information as to the pixel intensity within the spot once grids have
been placed. Segmentation classifies the image pixels into foreground (pixels
corresponds to spots of interest) and background (corresponds to the noise due to
errors/contaminations). The intensity extraction step calculates the fluorescence
intensities of the red and green spots, the back ground intensity and some
quality measures. The background intensities are used to correct the foreground
intensities.

3. Data Pre-processing

Microarray data can be quite noisy. Much of the variation in intensity
levels can arise from technical rather than biological causes. Non-biological
sources of variation can be introduced during sample preparation (e.g., dye
effects), array manufacture (e.g., probe concentration), and hybridization (e.g.,
amount of sample) and in the measurement process (e.g., scanner inaccuracies).
Preprocessing is the process of transforming the raw fluorescence signals detected
by microarray scanner into a signals normalized for experimental errors. In order
to accurately and precisely measure gene expression, it is important to consider
random (experimental) and systematic variations. Hence preprocessing operations
needs to be undertaken before analyzing the microarray data. Preprocessing of
microarray data addresses following two issues: (1) To adjust for background
intensities. (2) To transform the data into a scale suitable for analysis. Here we
discuss important pre-processing techniques.

3.1. Microarray normalization

The process of minimizing the effects of systematic sources of variation, so that
biological differences can be easily distinguished, is referred to as normalization.
Normalization is performed both within each array and between arrays to make
comparisons more meaningful. As pointed out by Yang et al. [38], [39] the
purpose of normalization is to remove systematic variation in a microarray
experiment which affects the measured gene expression levels. They summarized a
number of normalization methods: (i) within-slide normalization, (ii) paired-slide
normalization for dye-swap experiments, and (iii) multiple slide normalization.
The normalization methods which have been presented in the literature can be
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divided into two groups: linear methods and non-linear methods. The linear
methods generally involve either estimating one or more global constants for a
microarray, or fitting a linear regression to the log(R) versus log(G) data.

The non-linear methods that have been developed involve transforming the data
onto the axes ((log(R) + log(G))/2 versus log(R/G), and robustly fitting one or
more robust lowess curves to the data and computing the residuals from the curve
fit. Re-scaling of the points is done by dividing each final residual value by a robust
estimate of the standard deviation of the residuals, the median absolute deviation.
When a single curve is fitted, the method is referred to as slide normalization, and
when a curve is fitted to the data for each individual array printer pin, the method
is referred to as pin normalization.

3.2. Filtering of genes

The large number of gene expression profiles usually collected in microarray
experiments can be drastically reduced since many of them exhibit near constant
expression levels across samples. The aim of the filtering operation is to reduce
variability by removing those genes whose measurements are not sufficiently
accurate and also to decrease the dimensionality of the data by removing
genes that are not sufficiently differentiated. Filtering methods, select a subset
of genes independently of the classifier, are often used as pre-processing step
to remove irrelevant features, i.e. those genes whose expression level is not
correlated with the diagnosis. There are several techniques available to reduce data
dimensionality and variability. A generally applicable filtering approach called the
IQR filter proposed by Von Heydebreck, eliminate genes which are not sufficiently
differentially expressed. This filter is implemented in the Bioconductor package.
Comprehensive description of some filtering techniques are available in the book
by Kohane et al. [18].

3.3. Data transformation

After normalization, the data must be transformed for statistical analysis. The
type of transformation depends on the methods (parametric/nonparametric) used
for the analysis. Since the corrected microarray intensity values are highly skewed
many authors strongly recommended the log-transformation of the data (see,
[41]). Some authors suggested cubic root transformation (see, Tusher et al. [32])
for microarray data.

4. Classification methods

Classification is known as discrimination in the statistical literature and it
generates gene expression profiles which can discriminate between different
known cell types or conditions. There is a distinction between classification and
clustering. If the classes are pre-existing, then classification analysis is more
appropriate than clustering analysis. Dudoit et al. [14] compared the performance
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of various classification methods for classifying tumors based on gene expression
profiles. Lee et al. [22] gave an extensive comparison of recent classification tools
applied to microarray data. Here we discuss some of the important classification
tools.

4.1. Fisher’s linear discriminant analysis (FLDA)

FLDA is a classification method that projects high-dimensional data onto a
line and performs classification in this one-dimensional space. The projection
maximizes the distance between the means of the two classes while minimizing the
variance within each class. FLDA assumes observations have normal (Gaussian)
distribution and equal group covariance. Additionally, variables cannot form linear
expressions of one another. That is, they may not be perfectly correlated.

4.2. Generalized partial least squares (GPLS))

GPLS was originally designed for continuous response variable(s) and the
method is advanced in the field of Chemometrics. Ding and Gentleman [12]
applied generalized partial least squares approaches. Their functional ties are
based on and extended to Iteratively Re Weighted Least Squares (IRWPLS) by
fitting logit models for all C classes vs. baseline class separately with an option
of Firth́s bias reduction procedure for two-group and multi-group classification
proposed by Marx [25].

4.3. Support Vector Machines (SVM)

Support vector machine introduced by Vapnik [34] has attracted much
research attention in recent years due its demonstrated improved generalization
performance over other techniques in many real world applications including the
analysis of microarrays [6], [33]. It has been used in classification as well as
regression tasks. Advantage of this technique is that it minimizes the structural risk
instead of the empirical risk. The principle is based on the fact that minimizing an
upper bound on the generalization error rather than minimizing the training error
is expected to perform better.

4.4. Shrunken centroid method

Tibshirani et al. [31] developed a shrunken centroid (SC) algorithm for
classifying multiple cancer types. It is an integrated approach for feature selection
and classification. Features are selected by considering one gene at a time, the
difference between the class centroid (average expression level or ratio within a
class) of a gene and the overall centroid (average expression level or ratio over
all classes) of a gene is compared to the within-class standard deviation plus a
shrinkage threshold, which is fixed for all genes. The genes with at least one
class centroid that is significantly different from the overall centroid are selected
as relevant genes. The size of the shrinkage threshold is determined by cross-
validation on the training set to minimize classification errors.
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5. Clustering algorithms

Clustering is a fundamental technique in exploratory data analysis and pattern
discovery. Clustering microarray gene expression data yields valuable information
into the gene function and reveal the underlying pattern in data sets. For example
two functionally related genes are expressed in similar fashion. In addition, if a
gene’s function is unknown and it is clustered with gene’s having known function,
then the gene may share functionality with the genes of unknown function.
Similarly, if the activity of genes in one cluster precedes the activity in a second
cluster, then the genes in two clusters may be functionally related and genes in
first cluster may regulate the activity of genes in the second cluster. Also clustering
helps to identify co-regulated genes which is likely to be in common bio-chemical
pathway. Following are commonly used clustering methods for microarray analysis.

5.1. Hierarchical clustering

An early and commonly used method is hierarchical clustering, an iterative
procedure that selects at each iteration the two most similar vectors and merges
them. This is perhaps the most commonly used clustering technique which presents
the data as a list of genes in the form of dendrogram or tree view. At the initial
level, all genes form their own clusters. Subsequently smaller groups of genes with
smallest dissimilarity are grouped together producing a tree-like structure. The
dissimilarity between two groups is taken to be the average of all the pairwise
dissimilarity between the genes in the two groups. The tree is then cut at a
predetermined height to determine the hard clusters. Similarity is defined as some
distance measure (Euclidean, correlation, etc.). The output of the algorithm is
a binary tree in which similar expression vectors are close together. Hierarchical
clustering strategies have been applied to a fairly diverse set of experimental
conditions to cluster genes with correlated expression patterns (Eisen et al. [16]).

5.2. K-means

In K-means clustering techniques objects are classified as belonging to one of k
groups, k being chosen a priori. The cluster membership of an object is determined
by calculating the centroid for each group (the multidimensional version of the
mean) and assigning each object to the group with the closest centroid. This
approach minimizes the overall within cluster dispersion by iterative reallocation
of cluster members. The K-means clustering is sensitive to the chosen initial
partition. There are two methods for determining an initial partition: a random
based approach [2], [26] and an application-specific approach. The application-
specific approach can determine an initial partition in several different ways.
For example, we may set an initial partition for K-means clustering with the
hierarchical clustering technique.
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The K-means algorithm starts with a pre-specified cluster centers. The algorithm
then assigns the observations into various clusters in order to minimize the within-
class sum of squares. K-means, is an non hierarchical method, initially takes the
number of data points on the microarray equal to the final required number of
clusters. In this step itself, the final required number of clusters is chosen such
that the points are mutually farthest apart. Next, it examines each point in the
microarray and assigns it to one of the clusters depending on the minimum
expression distance. The centroid position is recalculated every time a data point is
added to the cluster and this continues until all the data points are grouped into the
final required number of clusters. This method thus requires prior knowledge of the
genes that are analyzed. One of the most significant limitations of this method is
that you may get different results from the same data if the starting conditions are
varied. Some other aspect of this method to note is that depending on the distance
used for clustering, some data points may not converge and oscillate indefinitely,
and the cluster solution can be influenced by the order of the cluster cases.

5.3. Model based clustering

The idea behind model based clustering is to regard the group labels as
unknown parameters along with other model parameters which may be necessary
to describe the data. The group levels are then selected by the methods like
maximum likelihood. The method mclust (Banfield and Raftery, [3]) was used
with the unconstrained option.

5.4. Self-organizing maps (SOM)

Self-organizing maps (SOM) are unsupervised learning algorithm. The
application of SOM to expression data was pioneered in the Gene Cluster software
developed at MIT and the Whitehead Institute (Tamayo et al. [30]). The SOM
learning algorithm is an iterative procedure in which the vectors in the data set
gravitate stochastically towards nodes in a pre-defined network of categories. The
self-organizing map (SOM) is a method for producing ordered low dimensional
representations of an input data space [30]. Typically, such input data is complex
and high dimensional with data elements being related to each other in a nonlinear
fashion. The self-organizing map method is ideally suited for explorative data
analysis where prior information about the distribution of the data is not available.
Also, the computational algorithms are relatively easy to implement, fast, and
scalable to large data sets. The results are easy to visualize and interpret.

6. Commonly used methods to find differentially expressed genes

6.1. Fold change

Fold change is the simplest method for identifying differentially expressed
genes. It evaluates the log ratio between two conditions (or the average of ratios
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when there are replicates) and considers all genes that differ by more than an
arbitrary cut-off value to be differentially expressed. The most important drawback
of this method is that, because the threshold is chosen arbitrarily, it may often be
inappropriate. For instance, if we want to select genes with at least 2 fold-change
to be differentially expressed and the condition under study does not affect any
gene to the point of inducing a 2 fold change, no genes will be selected resulting
in zero sensitivity. On the other hand, if the condition is such that many genes are
changing dramatically, the method will select too many genes and will have a low
specificity. Also fold change does not take into account the variability in the data.
This can lead to two problems. First, genes with low expression levels yet large fold
changes and high variability may be identified as differentially expressed. Second,
genes that display small but reproducible (i.e., low variability) changes in gene
expression may be missed.

6.2. The t-test

The t-test is a simple, statistical method for detecting differentially expressed
genes. When there are replicated samples under each condition the straight
forward method is to adopt the traditional two sample t-test. Let X1 and X2 be
two independent gene expression data under two conditions for a particular gene,
the two sample t-statistic is computed as

t =
X̄1 − X̄2

s

r
1

n1
+

1

n2

(6.1)

where s2, n1 and n2 are the pooled sample variance and the number of observations
in each condition respectively and s2 is computed as

s2 =
n1s2

1 + n2s2
2

n1 + n2 − 2

where s2
1 and s2

2 are the sample variances. The t-statistic follows approximately
a Student distribution, with n1 + n2 − 2 digress of freedom. The t-test utilize
the variance of the samples hence it has the potential of addressing some of
the shortcomings of fold change approach. However, the small sample sizes in
microarray studies can affect the variance estimates.

6.3. Modified t-tests

More stable estimates can be obtained to find differentially expressed genes but
these are subject to bias when the assumption of homogenous variance between
genes is violated. In such situations, modified versions of the t-test are both more
powerful and less subject to bias. The significance analysis of microarrays (SAM) is
a modified version of the t-test (known as the S-test). To address the shortcomings
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of the t-test several modifications have been applied.

t∗ =
M̄

(s+ a)/
p

n
(6.2)

where M̄ is the mean of the M-values (M = log2
R
G

, R is the intensity on the
red channel and G is the intensity on the green channel) for any particular gene
across the replicate arrays, ‘s’ is the standard deviation of the M values across the
replicates for the gene and n is the number of replicates. Any M-value that is an
outlier will give rise to large standard deviations, which will usually prevent the
gene in question from being spuriously identified as differentially expressed. With
this modification, genes with small fold changes will not be selected as significant.
Efron et al. [15], used a percentile of the distribution of sample standard deviations
as ‘a’. The SAM t-test (S-test) estimated ‘a’ from all the individual gene variances
(Tusher [32]).

6.4. Non-parametric approaches

The Wilcoxon rank sum test (equivalent to Mann–Whitney test) for two groups
or Kruskal-Wallis test for two or more groups has also been used as an alternative
method in testing differential expression which can be applied especially when the
data do not follow a normal distribution. Critical importance to possibly identify
a small subset of genes that best discriminate between tissues under different
conditions. The B statistic in (6.3) proposed by Lonnstedt and Speed [24] is log
posterior odds ratio of differential expression versus non-differential expression

B= log
Pr{DE}

Pr{not DE}
. (6.3)

It allows for gene specific variances but it also combines information across
many genes using an empirical Bayes approach and thus should be more stable
than the t-statistic and it is equivalent to moderated t-statistics in terms of
ranking of genes. The moderated t-statistic is shown to follow a t-distribution with
augmented degrees of freedom. The moderated t inferential approach extends to
accommodate tests involving two or more contrasts through the use of moderated
F -statistics.

6.5. ANOVA and multiple comparison

ANOVA methods provide an automatic correction for the extraneous effects
in a microarray experiment as an integral part of the data analysis. Changes in
gene expression across experimental samples are captured in the variety x gene
interaction terms of the ANOVA model. Kerr et al. [19] and G. Churchill [9]
proposed the use of traditional ANOVA methods in analyzing microarray data (see,
[20] and [21]). For a microarray gene expression data on several genes in various
cell types (nominally two) fit a linear model on the log expression as the response.
The model should include main effects and interaction due to gene and variety; it
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could also include effects due to array and dye if appropriate data are available.
Since the number of comparisons is enormous, the issue of a balance between
pairwise and experiment wise error rate persists with this method as well. A typical
ANOVA model can be given by,

yi jkg = µ+Ai +D j +ADi j +Gg +AGi g + VGkg +DG j g + εi jkg (6.4)

where yi jkg is the measured intensity from array i, dye j, variety k and gene g on
appropriate scale (typically log scale). They called variety to refer to the mRNA
samples under the study. The varieties may be treatment and control samples,
cancer and normal cells or different time points of a biological process. In this
model µ refers to the overall mean and the terms A, D and AD account for all
aspects that are not gene specific. The gene effect Gg capture the average levels
of expression of genes and the array-by-gene interaction (AGi g) accounts for the
difference due to varying sizes of spots on arrays. The dye-by-gene interaction
(DG j g) represent gene specific dye effects. None of these effects are of biological
interest and helps in normalization of the data for ancillary source of variation.
The effect of interest is the interaction between the gene and varieties (VGkg),
differences among these variety by gene interaction accounts for the relative gene
expression. For example to estimate the relative gene expression of gene g in
varieties 1 and 2, we should estimate (VG1g)−(VG2g). The error terms εi jkg are
assumed to be independent with mean 0 and variance σ2.

6.6. Regression model

Linear models for microarray data analysis have been described by Kerr et al.
[21], Wolfinger et al. [37]), Chu et al. [8] and Yang and Speed [40]. Kerr et al.
[21] propose a single linear model for an entire microarray experiment. The single
linear model approach assumes all equal variances across genes. Wolfinger et al.
[37] fit separate models for each gene but model the individual channels of two
color microarray data requiring the use of mixed linear models to accommodate
the correlation between observations on the same spot. Chu et al. [8] propose
mixed models for single channel oligonucleotide array experiments with multiple
probes per gene. A general statistical model is represented as,

ygi = αi + βg x i + εgi (6.5)

where x i = 1, for i = 1, 2, . . . , n1 and x i = 0, for i = n1 + 1, . . . , n2.
The εgi are the random errors with mean 0. Hence, βg represents the difference

of expression levels of gene g across two conditions. The test for differential
expression thus becomes testing for the null hypothesis in H0 : βg = 0 against
H1 : βg 6= 0. The αi and βg estimated using weighted least square approach and
estimated the variance of β̂g using the robust or sandwich variance estimator.
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6.7. Multiple hypothesis testing

The biological question of differential expression can be considered as
a problem in multiple hypothesis testing in which m null hypotheses are
simultaneously tested, where m can be considerably large. In such situations,
false discoveries (true null hypothesis declared significant) are inevitable. Thus,
it is important in any multiple testing problem to control the error rate of false
discoveries. Multiple testing procedures consist of choosing a vector of cutoffs for
the test statistics such that a suitably defined false positive rate is controlled at an
apriori specified level.

A standard approach to the multiple testing problem consists of two aspects
namely computing a test statistic T j for each gene j and applying multiple testing
procedures to determine which hypotheses to reject while controlling a suitably
defined Type I error rate (Tusher et al. [32], Dudoit et al. [13] and Golub et al.
[17]). The FDR-based multiple testing approaches, such as the Benjamini and
Hochberg (BH) procedure [4] and the Benjamini and Liu procedure [5], have
been developed for testing for a large family of hypotheses. FDR is the expected
proportion of false positives among all rejected hypotheses. The Benjamini-
Hochberg procedure has been shown to control the FDR under certain assumptions
on the dependence structure of the gene expression levels. Unfortunately, there
are many microarray studies not covered by the assumptions underlying the
Benjamini-Hochberg algorithm. The Westfall and Young procedure [36] address
the multiple test problem by controlling the family-wise error rate, which is the
probability that at least one false positive occurs over the collective tests [16].
Storey and Tibshirani [29] developed a new measure, positive FDR (pFDR), that
is an arguably more appropriate variation. Tusher et al. [32] developed a new
FDR-based method, called Significance Analysis of Microarrays (SAM). SAM is
very popular because it can identify genes with significant change of the level of
expression and can estimate FDR based on permutations.

6.8. Empirical Bayes Methods

Bayesian approaches make assumptions about the parameters to be estimated
(such as the differences between gene levels in treatment and control groups).
Used intelligently, these assumptions can make use of prior experience with
microarray data. A pure Bayes approach assumes specific distributions (prior
distributions) for the mean differences of gene levels, and their standard
deviations. The empirical Bayes approach assumes less, usually that the form of
these distributions is known; the parameters of the prior distribution are estimated
from data. As we get more detailed knowledge of the variability of individual
genes, it should become possible to make detailed useful prior estimates based
on past experience.
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In the case of empirical Bayes studies, inference is usually made on some
quantities related to the posterior distribution of the parameter of interest, or of
a certain type of hypothesis. West et al. [35], considered an approach based on
probit model and linear regression for characterizing differential gene expression.
Another approach is to model the gene expression data through binary probit
model for classification and use Bayesian variable selection methodology to select
important genes (Brown et al. [7]). Lee et al. [23], proposed a hierarchical
Bayesian model and employed latent variables to specialize the model to a
regression setting and applied variable selection to select differentially expressed
genes.

6.9. Partial least squares

Partial least squares is a statistical technique that is capable of modeling a large
number of explanatory variables when only a few observations on each are present.
An ordinary least squares regression would be impossible since the number of
possible parameters will be lot more than what the available data can estimate.
Since in a microarray experiment, expression levels of thousands of genes are
measured, may be for different time points (or for a handful of samples), the use of
partial least squares seems appropriate. Datta [10] investigated the question that
how well the expression levels of a given gene can be predicted from the expression
levels of the other genes using a simple model. The method of partial least squares
was used for this purpose. Showed that this method may identify important gene
relationships that warrant further biological investigation.

7. Statistical model for microarray gene expression data

In this section we use the two component mixed Gaussian distribution to model
the distribution of a cDNA dual dye microarray gene expression data sets. We
downloaded two cDNA dual dye microarray data sets (Experiment id-51401)
from the Stanford Microarray Database. Each array chip contains approximately
42,000 human cDNA elements, representing over 30,000 unique genes. A type
II experimental design was applied in which a universal human reference RNA
(Stratagene) served as the common reference probe in all hybridisations. For
each of these hybridisations, the universal human RNA was amplified and used
to make cDNA probes labelled with green die Cy3 (Amersham). Amplified RNA
from tissue samples was used to make cDNA probes labelled with Cy5 (red).
Finally, after gridding, array data were uploaded to the Stanford Microarray
Database. The dataset was normalised using quantile normalization method. This
method is capable of removing intensity dependence in log2(Ri/Gi) values. After
normalisation, each distribution of the gene expression has a similar shape and
exhibits heavier tails compared to a Gaussian distribution and a certain degree of
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asymmetry. Box plot of log2(Ri/Gi) for before and after quantile normalization are
given below.

(a) (b)

Figure 1. Box plot for microarray gene expression data experiment id-
51401 (a) Before quantile normalization, (b) After quantile normaliza-
tion

Mixture models are an interesting and flexible model family. The different uses
of mixture models include for example generative component models, clustering
and density estimation. Moreover, mixture models have been successfully used
in various kinds of tasks such as modelling failure rate data, clustering teaching
behaviour and in general for modelling large heterogeneous populations.

A two-component Gaussian mixture model can be defined by two Gaussian
distributions, N(µ1,σ1) and N(µ2,σ2), and the probability that the random
variable (the observable) arises from the first distribution is κ. The parameter
in this model is the vector θ = (κ,µ1,σ1,µ1,σ2). Then the pdf of the mixture is

f (x;θ) = κ f1(µ1,σ1) + (1−κ) f2(µ2,σ2) (7.1)

where fi(µi ,σi) is the Gaussian pdf with parameters µi and σi . We fitted the
mixed Gaussian distribution to the intensities m = log2(Ri/Gi) for the data set
(Experiment id-51401). Maximum likelihood estimators (MLE) of the parameters
(µ1,µ2,σ1,σ2,κ) are obtained by using the optim function of the R statistical
software, applying the BFGS algorithm (See R Development Core Team, [27]). The
maximum likelihood estimates of the parameters, standard errors (SE) and 90%
lower and upper confidence limits (LCL & UCL) are reported in Table 2. Figure 2,
depicts a histogram of the gene expression data and the fitted probability density
function evaluated at the MLEs.

We have proposed the mixed Gaussian family as a class of distributions that
might be used to describe the pattern of differential gene expression for genes that
are differentially expressed. This family was chosen primarily for its flexibility and
tractability.
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Table 1. Application - MLEs, standard errors (SE) and 90% confidence
limits (LCL & UCL) for the parameters

MLE SE LCL UCL

µ1 – 0.040 0.010 – 0.0570 – 0.0232
µ2 0.023 0.002 0.0194 0.0272
σ1 1.232 0.010 1.2162 1.2481
σ2 0.293 0.002 0.2883 0.2981
κ 0.368 0.005 0.3589 0.3764

Figure 2. Histogram of microarray gene expression data. The lines
represent distributions fitted using maximum likelihood estimation:
mixed Gaussian probability density function (black line) and normal
(black dotted line)

8. Summary

Microarrays are high throughput biological assays that allow the screening of
thousands of genes for their expression. The main idea behind microarrays is to
compute for each gene a unique signal that is directly proportional to the quantity
of mRNA that was hybridized on the chip. Microarray experiment consists of
large number of steps and errors can be introduced at any of these steps while
performing the experiment. As many as possible of these errors should be taken
into consideration while designing the layout of the experiment. A careful planning
of the experiment before the actual execution would eventually minimize the
effect of unwanted variations and maximize the precision of the estimates of the
parameters of interest.
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In this work, we have presented a new statistical model for the distribution
of differential gene expression. The model provides the flexibility for modelling
impulsiveness and skewness required for gene expression data. We believe that
the statistical model presented in this paper will be very useful in estimation
and detection problems involving microarray gene expression data. The mixed
Gaussian distribution is often considered as a noise model in a number of signal
processing applications.

The scope of statisticians to get involved in this exciting new area is tremendous,
since the huge volume of data emerging from the microarray experiments need
efficient and proper statistical methods for deriving valid conclusions. The tools
and techniques described here are by no means comprehensive and many new
algorithms and software tools are under development. This article makes a modest
attempt to summarize the current state of affairs of statistical research in the area
of microarray technology.

Acknowledgment

The first author is grateful to the Department of Science & Tehnology,
Government of India, New Delhi, for financial support under the Women Scientist
Scheme (WOS-A (2008)), Project No: SR/WOS-A/MS-09/2008.

References

[1] P. Baldi and A.D. Long, A Bayesian framework for the analysis of microarray expression
data: regularized t-test and statistical inferences of gene changes, Bioinformatics
17(2001), 509–519.

[2] P. Baldi and G.W. Hatfield, DNA Microarrays and Gene Expression, Cambridge University
Press (2002).

[3] J.D. Banfield and A.E. Raftery, Model-based Gaussian and non-Gaussian clustering,
Biometrics 49 (1993), 803–822.

[4] Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and
powerful approach to multiple testing, J. Roy. Statist. Soc. Ser. B 57 (1995), 289–300.

[5] Y. Benjamini and W. Liu, A step-down multiple hypotheses testing procedure that
controls the false discovery rate under independence, J. Stat. Plan. Inference 82
(1995), 163–170.

[6] M.P.S. Brown, W.N. Grundy, D. Lin, N. Cristianini, C. Sugnet, M. Agnes, Jr. and
D. Haussler, Support vector machine classification of microarray gene expression data,
Technical report, University of California (Santa Cruz), (1999).

[7] P.J. Brown, M. Vannucci and T. Fearn, Multivariate Bayesian variable selection and
prediction, Journal of the Royal Statistical Society: Series B (Statistical Methodology)
60 (1998), 627–641.

[8] T.M. Chu, B. Weir and R. Wolfinger, A systematic statistical linear modeling approach
to oligonucleotide array experiments, Mathematical Biosciences 176 (2002), 35–51.

[9] G.A. Churchill, Fundamentals of experimental design for cDNA microarrays, Nature
Genet 32 Supp. l (2002), 490–495.

[10] S. Datta, Exploring relationships in gene expressions: a partial least squares approach,
Gene Expression 9(2001), 257–264.



274 Bindu Punathumparambath, Sebastian George, and Kannan V.M.

[11] J.L. De Risi, V.R. Iyer and P.O. Brown, Exploring the metabolic and genetic control of
gene expression on a genomic scale, Science 278(1997), 680–685.

[12] B. Ding and R. Gentleman, Classification Using Generalized Partial Least Squares,
Department of Biostatistics, Harvard University, 2003.

[13] S. Dudoit, Y.H. Yang, M.J. Callow and T.P. Speed, Statistical methods for identifying
differentially expressed genes in replicated cDNA microarray experiments, Statistica
Sinica 12(2002), 111–139.

[14] S. Dudoit, J. Fridlyand and P. Speed, Comparison of discrimination methods for
classification of tumors using gene expression data, J. Amer. Statist. Assoc. 97(2002)
77–87.

[15] B. Efron, R. Tibshirani, V. Goss and G. Chu, Microarrays and their use in a comparative
experiment, J. Amer. Stat. Assoc. 96(2001), 1151–1160.

[16] M.B. Eisen, P.T. Spellman, P.O. Brown and D. Botstein, Cluster analysis and display of
genome-wide expression patterns, Proc. Nat. Acad. Sci. 95(1998), 14863–14868.

[17] T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard and M. Gaasenbeek et al., Molecular
classification of cancer: class discovery and class prediction by gene expression
monitoring, Science 286(1999), 531–537.

[18] I.S, Kohane, A.T. Kho and A.J. Butte, Microarrays for an Integrative Genomics, MIT
Press, Cambridge, MA, (2002).

[19] K.M. Kerr, M. Martin and G.A. Churchill, Analysis of variance for gene expression
microarray data, J. Comput. Biol. 7(2000), 819–837.

[20] K.M. Kerr and G.A. Churchill, experimental design issues for gene expression
microarrays, Biostatistics 2(2001), 183–201.

[21] K.M. Kerr, C.A. Afshari, L. Bennett, P. Bushel, N.W. Martinez and G.A. Churchill,
Statistical analysis of a gene expression microarray experiment with replication,
Statistica Sinica 12(2002), 203–217.

[22] J.W. Lee, J.B. Lee, M. Park and S.H. Song, An extensive comparison of recent
classification tools applied to microarray data, Computational Statistics & Data Analysis
48 (2005), 869–885.

[23] K.E. Lee, N. Sha, E.R. Dougherty, M. Vannucci and B.K. Mallick, Gene selection: a
Bayesian variable selection approach, Bioinformatics 19(1)(2003), 90–97.

[24] I. Lonnstedt and T.P. Speed, Replicated microarray data, Statistica Sinica 12(2002),
31–46.

[25] B.D. Marx, Iteratively reweighted partial least squares estimation for generalized
linear regression, Technometrics 38 (1996), 374–381.

[26] W. Pan, J. Lin and C. Le, How many replicates of arrays are required to detect
gene expression changes in microarray experiment? A mixture model approach,
Biostatistics, University of MN Technical Report, 2002.

[27] R Development Core Team, R: A Language and Environment for Statisti-
cal Computing, R Foundation for Statistical Computing: Vienna, Austria,
http://www.R-project.org/, 2006.

[28] G.K. Smyth, Linear models and empirical Bayes methods for assessing differential
expression in microarray experiments, Statistical Applications in Genetics and Molecular
Biology 3(1) (2004), 3.

[29] J.D. Storey and R. Tibshirani, Statistical methods for identifying differentially
expressed genes in DNA microarrays, Methods Mol. Biol. 224 (2003), 149–157.

[30] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E. Lander and
T. Golub, Interpreting patterns of gene expression with self-organizing maps, PNAS 96
(1999), 2907–2912.



Statistical Techniques for Microarray Technology 275

[31] R. Tibshirani, T. Hastie, B. Narasimhan and G. Chu, Diagnosis of multiple cancer types
by shrunken centroids of gene expression, Proc. Natl. Acad. Sci. USA 99 (2002), 6567–
6572.

[32] V.G. Tusher, R. Tibshirani and G. Chu, Significance analysis of microarrays applied to
the ionizing radiation response, Proceedings of National Academy of Science 98 (2001),
5116–5121.

[33] G. Valentini, Gene expression data analysis of human lymphoma using support vector
machines and output coding ensembles, Artificial Intelligence in Medicine 26 (2002),
281–304.

[34] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, 1995.
[35] M. West, J.R. Nevin, J.R. Marks, R. Spang and H. Zuzan, Bayesian regression analysis

in the Large p, small n paradigm with application in DNA microarray studies, Technical
Report, Duke University, 2000.

[36] P.H. Westfall and S.S. Young, Resampling-based Multiple Testing, John Wiley & Sons,
New York, 1993.

[37] R.D. Wolfinger, G. Gibson, E.D. Wolfinger, L. Bennett, H. Hamadeh, P. Bushel,
C. Afshari and C.R.S. Paules, Assessing gene significance from cDNA microarray
expression data via mixed models, J. Comp. Biol. 8(2001), 625–637.

[38] Y.H. Yang, S. Dudoit, P. Luu and T.P. Speed, Normalization for cDNA microarray, In:
M.L. Bittner, Y. Chen, A.N. Dorsel and E.R. Dougherty (eds), Microarrays: Optical
Technologies and Information, SPIE, Soceity for Optical Engineering, San Jose, CA,
2001.

[39] Y.H. Yang, S. Dudoit, P. Luu, M.D. Lin, V. Peng, J. Ngai and T.P. Speed, Normalization
for cDNA microarray data: a robust composite method addressing single and multiple
slide systematic variation, Nucl. Acids Res. 30(4)(2002), e15.

[40] Y.H. Yang and T.P. Speed, Design and analysis of comparative microarray experiments,
In: T.P. Speed (ed.), Statistical Analysis of Gene Expression Microarray Data, Chapman
& Hall: CRC Press, 35–91, 2003.

[41] K.Y. Yeung, C. Fraley, A. Murua, A.E. Raftery and W.L. Ruzzo, Model based clustering
and data transformations for gene expression data, Bioinformatics 17 (2001), 977–
987.

Bindu Punathumparambath, Department of Statistics, St.Thomas College, Pala,
Kerala, India.
E-mail: ppbindukannan@gmail.com

Sebastian George, Department of Statistics, St.Thomas College, Pala, Kerala, India.
E-mail: sthottom@gmail.com

Kannan V.M., Department of Zoology, University of Calicut, Kerala, India,
(contributed section 1 and section 2).
E-mail: kannanvadakkadath@gmail.com

Received April 1, 2011
Accepted July 26, 2011


