Journal of Informatics and Mathematical Sciences Volume 3 (2011), Number 3, pp. 233–239 © RGN Publications

On Contra Ig-continuity in Ideal Topological Spaces

RGN

http://www.rgnpublications.com

M. Rajamani, V. Inthumathi, and V. Chitra

Abstract. In this paper, \mathscr{I}_g -closed sets and \mathscr{I}_g -open sets are used to define and investigate a new class of functions called contra \mathscr{I}_g -continuous functions in ideal topological spaces. We discuss the relationships with some other related functions.

1. Introduction

An *ideal* \mathscr{I} on a topological space (X, τ) is a nonempty collection of subsets of *X* which satisfies

- (i) $A \in \mathscr{I}$ and $B \subset A$ implies $B \in \mathscr{I}$ and
- (ii) $A \in \mathscr{I}$ and $B \in \mathscr{I}$ implies $A \cup B \in \mathscr{I}$.

Given a topological space (X, τ) with an ideal \mathscr{I} on X and if $\mathscr{P}(X)$ is the set of all subsets of X, a set operator $(\cdot)^* : \mathscr{P}(X) \to \mathscr{P}(X)$, called a *local function* [16] of A with respect to τ and \mathscr{I} is defined as follows: for $A \subset X$, $A^*(\tau, \mathscr{I}) = \{x \in X/U \cap A \notin \mathscr{I}\}$ for every $U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau/x \in U\}$. A Kuratowski closure operator $cl^*(\cdot)$ for a topology $\tau^*(\tau, \mathscr{I})$ called the *-topology, finer than τ is defined by $cl^*(A) = A \cup A^*(\tau, \mathscr{I})$ [9]. When there is no chance of confusion, we will simply write A^* for $A^*(\tau, \mathscr{I})$ and τ^* for $\tau^*(\tau, \mathscr{I})$. If \mathscr{I} is an ideal on X then (X, τ, \mathscr{I}) is called an ideal topological space. A subset A of an ideal space (X, τ, \mathscr{I}) is *-closed(τ^* -closed) [8] if $A^* \subset A$. By a space, we always mean a topological space (X, τ) with no separation properties assumed. If $A \subset X$, cl(A) and int(A) will denote the closure and interior of A in (X, τ) respectively. A subset A of (X, τ) is said to be *regular open* [15] (resp. *regular closed* [15]) if A = int(cl(A)) (resp. A = cl(int(A))). In this paper, we introduce the notion of contra \mathscr{I}_g -continuity in ideal topological spaces and discuss their properties and give various characterizations.

2. Preliminaries

A subset *A* of an ideal space (X, τ, \mathscr{I}) is \mathscr{I}_g -closed [10] if $A^* \subset U$ whenever $A \subset U$ and *U* is open. The complement of an \mathscr{I}_g -closed set is \mathscr{I}_g -open. The family of all

²⁰¹⁰ Mathematics Subject Classification. 54A05.

Key words and phrases. \mathscr{I}_{g} -closed sets; \mathscr{I}_{g} -continuity; contra \mathscr{I}_{g} -continuity and contra *-continuity.

 \mathscr{I}_{g} -open sets is denoted by IGO(X). A subset of an ideal space (X, τ, \mathscr{I}) is said to \mathscr{I}_{rg} -closed [12] if $A^* \subset U$ whenever $A \subset U$ and U is regular open. A subset A is called \mathscr{I}_{rg} -open if X - A is \mathscr{I}_{rg} -closed and every rg-closed set is an \mathscr{I}_{rg} closed set. An ideal topological space (X, τ, \mathscr{I}) is said to be \mathscr{I}_g -normal [11] if each pair of nonempty disjoint closed sets can be seperated by disjoint \mathscr{I}_g -open sets. A function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma)$ is called \mathscr{I}_g -continuous [7] if the inverse image of every closed set in Y is \mathscr{I}_g -closed in X. In a topological space (X, τ) , a function $f : (X, \tau) \to (Y, \sigma)$ is said to be *contra continuous* [4] if for each open set V in Y, $f^{-1}(V)$ is closed in X and $f: (X, \tau) \to (Y, \sigma)$ is said to be contra gcontinuous [3] if for each open set V in Y, $f^{-1}(V)$ is g-closed in X. A function $f:(X,\tau) \to (Y,\sigma)$ is called *preclosed* [6] if the image of every closed subset of X is preclosed in Y. A space (X, τ) is called *locally indiscrete* [13] if every open set is closed. A space (X, τ) is said to be *g*-space [3](resp. *gS*-space [3]) if every *g*-open set of X is open(resp. semiopen) in X. A space (X, τ) is said to be $g \cdot T_2$ [2] if for each pair of distinct points x and y in X there exist two g-open sets U containing x and V containing y such that $U \cap V = \phi$. A space (X, τ) is said to be g-normal [3] if each pair of nonempty disjoint closed sets can be separated by disjoint gopen sets. A space (X, τ) is said to be an Ultra Hausdorff space [14] if for each pair of distinct points x and y in X there exist two clopen sets U containing x and V containing y such that $U \cap V = \phi$. A space (X, τ) is said to be GO-connected [1] if X cannot be expressed as two disjoint nonempty g-open sets of X.

3. Contra \mathscr{I}_g -continuity

Definition 3.1. A function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma)$ is said to be *contra* \mathscr{I}_g -continuous if $f^{-1}(V)$ is \mathscr{I}_g -closed in (X, τ, \mathscr{I}) for each open set V in (Y, σ) .

Definition 3.2. A function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma)$ is said to be *contra* \mathscr{I}_{rg} *continuous* if $f^{-1}(V)$ is \mathscr{I}_{rg} -closed in (X, τ, \mathscr{I}) for each open set V in (Y, σ) .

Proposition 3.3. Every contra g-continuous function is contra \mathscr{I}_{g} -continuous.

Proof. Let $f : (X, \tau, \mathscr{I}) \to (Y, \sigma)$ be a contra *g*-continuous function and let *V* be any open set in *Y*. Then, $f^{-1}(V)$ is *g*-closed in *X*. Since every *g*-closed set is \mathscr{I}_g -closed, $f^{-1}(V)$ is \mathscr{I}_g -closed in *X*. Therefore *f* is contra \mathscr{I}_g -continuous.

However, converse need not true as seen from the following example.

Example 3.4. Let $X = \{a, b, c, d\}, \tau = \{\phi, \{b\}, \{b, c, d\}, X\}, \sigma = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ and $\mathscr{I} = \{\phi, \{c\}\}$. Then the identity function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma)$ is contra \mathscr{I}_g -continuous but not contra *g*-continuous.

Remark 3.5. The following example shows that \mathscr{I}_g -continuity and contra \mathscr{I}_g -continuity are independent.

Example 3.6. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, X\}, \sigma = \{\phi, \{b\}, \{b, c\}, X\}$ and $\mathscr{I} = \{\phi, \{c\}\}$. Then the identity function $f : (X, \tau, \mathscr{I}) \to (X, \sigma)$ is contra \mathscr{I}_g -continuous but not \mathscr{I}_g -continuous. The function $f : (X, \tau, \mathscr{I}) \to (X, \sigma)$ defined by f(a) = c, f(b) = a and f(c) = b is \mathscr{I}_g -continuous but not contra \mathscr{I}_g -continuous.

Proposition 3.7. Every contra \mathscr{I}_g -continuous function is contra \mathscr{I}_{rg} -continuous.

Proof. The proof follows from the fact that every \mathscr{I}_g -closed set is \mathscr{I}_{rg} -closed in *X*.

Example 3.8. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}, \sigma = \{\phi, \{b\}, \{a, c\}, X\}$ and $\mathscr{I} = \{\phi \{c\}\}$. Then the identity function $f : (X, \tau, \mathscr{I}) \to (X, \sigma)$ is contra \mathscr{I}_{rg} continuous but not contra \mathscr{I}_{g} -continuous.

Definition 3.9. A map $f : (X, \tau, \mathscr{I}) \to (Y, \sigma)$ is called *contra* *-*continuous* if the inverse image of every open set in (Y, σ) is *-closed in (X, τ, \mathscr{I}) .

Proposition 3.10. Every contra *-continuous function is contra \mathscr{I}_g -continuous.

Proof. Let $f : (X, \tau, \mathscr{I}) \to (Y, \sigma)$ be a contra *-continuous function and let *V* be any open set in *Y*. Then, $f^{-1}(V)$ is *-closed in *X*. Since every *-closed set is \mathscr{I}_q -closed, $f^{-1}(V)$ is \mathscr{I}_q -closed in *X*.

However, converse need not true as seen from the following example.

Example 3.11. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, X\}, \sigma = \{\phi, \{b\}, \{b, c\}, X\}$ and $\mathscr{I} = \{\phi, \{c\}\}$. Then the identity function $f : (X, \tau, \mathscr{I}) \to (X, \sigma)$ is contra \mathscr{I}_g -continuous but not contra *-continuous.

Theorem 3.12. Let $f : (X, \tau, \mathscr{I}) \to (Y, \sigma)$ be a function. Then the following are equivalent:

- (i) f is contra \mathscr{I}_g -continuous.
- (ii) The inverse image of each closed set in Y is \mathscr{I}_g -open in X.
- (iii) For each point x in X and each closed set V in Y with $f(x) \in V$, there is an \mathscr{I}_g -open set U in X containing x such that $f(U) \subset V$.

Proof. (i) \Rightarrow (ii). Let *F* be closed in *Y*. Then *Y* - *F* is open in *Y*. By definition of contra \mathscr{I}_g -continuous, $f^{-1}(Y - F)$ is \mathscr{I}_g -closed in *X*. But $f^{-1}(Y - F) = X - f^{-1}(F)$. This implies $f^{-1}(F)$ is \mathscr{I}_g -open in *X*.

(ii) \Rightarrow (iii). Let $x \in X$ and V be any closed set in Y with $f(x) \in V$. By (ii), $f^{-1}(V)$ is \mathscr{I}_g -open in X. Set $U = f^{-1}(V)$. Then there is an \mathscr{I}_g -open set U in X containing x such that $f(U) \subset V$.

(iii)⇒(i). Let *x* ∈ *X* and *V* be any closed set in *Y* with $f(x) \in V$. Then *Y*−*V* is open in *Y* with $f(x) \in V$. By (iii), there is an \mathscr{I}_g -open set *U* in *X* containing *x* such that $f(U) \subset V$. This implies $U = f^{-1}(V)$. Therefore, $X - U = X - f^{-1}(V) = f^{-1}(Y - V)$ which is \mathscr{I}_g -closed in *X*. **Theorem 3.13.** Let $f : (X, \tau, \mathscr{I}) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \mu)$. Then the following properties hold:

- (i) If f is contra \mathscr{I}_g -continuous and g is continuous then $g \circ f$ is contra \mathscr{I}_g -continuous.
- (ii) If f is contra \mathscr{I}_g -continuous and g is contra continuous then $g \circ f$ is \mathscr{I}_g -continuous.
- (iii) If f is \mathscr{I}_g -continuous and g is contra continuous then $g \circ f$ is contra \mathscr{I}_g -continuous.

Proof. (i) Let V be a closed set in Z. Since g is continuous, $g^{-1}(V)$ is closed in Y. Since f is contra \mathscr{I}_g -continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is \mathscr{I}_g -open in X. Therefore $g \circ f$ is contra \mathscr{I}_g -continuous.

(ii) Let *V* be any closed set in *Z*. Since *g* is contra continuous, $g^{-1}(V)$ is open in *Y*. Since *f* is contra \mathscr{I}_g -continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is \mathscr{I}_g -closed in *X*. Therefore $g \circ f$ is \mathscr{I}_g -continuous.

(iii) Let *V* be any closed set in *Z*. Since *g* is contra continuous, $g^{-1}(V)$ is open in *Y*. Since *f* is \mathscr{I}_g -continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is \mathscr{I}_g -open in *X*. Therefore $g \circ f$ is contra \mathscr{I}_g -continuous.

Theorem 3.14. If a function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma)$ is contra \mathscr{I}_g -continuous and Y is regular, then f is \mathscr{I}_g -continuous.

Proof. Let *x* be an arbitrary point of *X* and *V* be an open set of *Y* containing f(x). Since *Y* is regular, there exists an open set *W* in *Y* containing f(x) such that $cl(W) \subset V$. Since *f* is contra \mathscr{I}_g -continuous, by Theorem 3.12, there exists an \mathscr{I}_g -open set *U* containing *x* such that $f(U) \subset cl(W)$. Thus $f(U) \subset cl(W) \subset V$. Hence *f* is \mathscr{I}_g -continuous. □

Definition 3.15. A space (X, τ, \mathscr{I}) is said to be an \mathscr{I}_g -space if every \mathscr{I}_g -open set is *-open in (X, τ, \mathscr{I}) .

Theorem 3.16. A function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma)$ is contra \mathscr{I}_g -continuous and X is an \mathscr{I}_g -space then f is contra *-continuous.

Proof. Let *V* be a closed set in *Y*. Since *f* is contra \mathscr{I}_g -continuous, $f^{-1}(V)$ is \mathscr{I}_g -open in *X*. Since *X* is an \mathscr{I}_g -space, $f^{-1}(V)$ is *-open in *X*. Therefore *f* is contra *-continuous.

Definition 3.17. An ideal topological space (X, τ, \mathscr{I}) is said to be \mathscr{I}_g - T_2 space if for each pair of distinct points x and y in (X, τ, \mathscr{I}) , there exists an \mathscr{I}_g -open set U containing x and an \mathscr{I}_g -open set V containing y such that $U \cap V = \phi$.

Theorem 3.18. If (X, τ, \mathscr{I}) is an ideal topological space and for each pair of distinct points x_1, x_2 in X, there exists a function f from (X, τ, \mathscr{I}) into a Urysohn space Y such that $f(x_1) \neq f(x_2)$ and f is contra \mathscr{I}_g -continuous at x_1 and x_2 , then X is \mathscr{I}_g - T_2 .

Proof. Let x_1 and x_2 be any two distinct points in X. Then by hypothesis, there is a function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma)$, such that $f(x_1) \neq f(x_2)$. Let $y_i = f(x_i)$ for i = 1, 2. Then $y_1 \neq y_2$. Since Y is Urysohn, there exists open neighbourhoods V_{y_1} and V_{y_2} of y_1 and y_2 respectively in Y such that $cl(V_{y_1}) \cap cl(V_{y_2}) = \phi$. Since f is contra \mathscr{I}_g -continuous, there exists an \mathscr{I}_g -open set U_{x_i} of x_i in X such that $f(U_{x_i}) \subset cl(V_{y_i})$ for i = 1, 2. Hence we get $U_{x_1} \cap U_{x_2} = \phi$ because $cl(V_{y_1}) \cap cl(V_{y_2}) = \phi$. Thus X is \mathscr{I}_g - T_2 .

Corollary 3.19. If f is a contra \mathscr{I}_g -continuous injection of an ideal topological space (X, τ, \mathscr{I}) into a Urysohn space (Y, σ) , then (X, τ, \mathscr{I}) is \mathscr{I}_g - T_2 .

Proof. Let x_1 and x_2 be any pair of distinct points in *X*. Since *f* is contra \mathscr{I}_g -continuous and injective, we have $f(x_1) \neq f(x_2)$. Therefore by Theorem 3.18, *X* is \mathscr{I}_g - T_2 .

Corollary 3.20. If f is a contra \mathscr{I}_g -continuous injection of an ideal topological space (X, τ, \mathscr{I}) into a Ultra Hausdorff space (Y, σ) , then (X, τ, \mathscr{I}) is \mathscr{I}_g - T_2 .

Proof. Let x_1 and x_2 be any two distinct points in *X*. Then since *f* is injective and *Y* is Ultra Hausdorff, $f(x_1) \neq f(x_2)$ and there exists two clopen sets V_1 and V_2 in *Y* such that $f(x_1) \in V_1$, $f(x_2) \in V_2$ and $V_1 \cap V_2 = \phi$. Then $x_i \in f^{-1}(V_i) \in \text{IGO}(X)$ for i = 1, 2 and $f^{-1}(V_1) \cap f^{-1}(V_2) = \phi$. Thus *X* is \mathscr{I}_g - T_2 .

Theorem 3.21. If $f : (X, \tau, \mathscr{I}) \to (Y, \sigma)$ is a contra \mathscr{I}_g -continuous, closed injection and Y is Ultra normal, then (X, τ, \mathscr{I}) is \mathscr{I}_g -normal.

Proof. Let F_1 and F_2 be disjoint closed subsets of *X*. Since *f* is closed and injective, $f(F_1)$ and $f(F_2)$ are disjoint closed subsets of *Y*. Since *Y* is Ultra normal, $f(F_1)$ and $f(F_2)$ are separated by disjoint clopen sets V_1 and V_2 respectively. Hence $F_i \subset f^{-1}(V_i), f^{-1}(V_i) \in IGO(X)$ for i = 1, 2 and $f^{-1}(V_1) \cap f^{-1}(V_2) = \phi$. Thus *X* is \mathscr{I}_g -normal. □

Definition 3.22. A graph G(f) of a function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma)$ is said to be contra \mathscr{I}_g -closed if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist an $U \in \text{IGO}(X)$ containing x and a closed set V of (Y, σ) containing y such that $f(U) \cap V = \phi$.

Theorem 3.23. If $f : (X, \tau, \mathscr{I}) \to (Y, \sigma)$ is contra \mathscr{I}_g -continuous and (Y, σ) is Urysohn, then G(f) is contra \mathscr{I}_g -closed in $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) \setminus G(f)$, then $f(x) \neq y$ and there exists open sets *V*, *W* such that $f(x) \in V$, $y \in W$ and $cl(V) \cap cl(W) = \phi$. Since *f* is contra \mathscr{I}_{g} -continuous there exists $U \in IGO(X)$ containing *x* such that $f(U) \subset cl(V)$. Since $cl(V) \cap cl(W) = \phi$, we have $f(U) \cap cl(W) = \phi$. This shows that G(f) is contra \mathscr{I}_{g} -closed in $X \times Y$. □

Remark 3.24. The following example shows that the condition Urysohn on the space (Y, σ) in Theorem 3.23 cannot be dropped.

Example 3.25. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, X\}, \sigma = \{\phi, \{b\}, \{b, c\}, X\}$ and $\mathscr{I} = \{\phi, \{c\}\}$. Clearly X is not a Urysohn space. Also the identity function $f : (X, \tau, \mathscr{I}) \to (X, \sigma)$ is contra \mathscr{I}_g -continuous but not contra \mathscr{I}_g -closed.

Corollary 3.26 ([3], Theorem 2.26). If $f : (X, \tau) \rightarrow (X, \sigma)$ is contra g-continuous function and (Y, σ) is a Urysohn space, then G(f) is contra-g-closed in $X \times Y$.

Proof : The proof follows from the Theorem 3.23 if $\mathscr{I} = \{\phi\}$.

Definition 3.27. An ideal topological space (X, τ, \mathscr{I}) is said to be \mathscr{I}_g -connected if (X, τ, \mathscr{I}) cannot be expressed as the union of two disjoint nonempty \mathscr{I}_g -open subsets of (X, τ, \mathscr{I}) .

Theorem 3.28. A contra \mathscr{I}_g -continuous image of a \mathscr{I}_g -connected space is connected.

Proof. Let $f : (X, \tau, \mathscr{I}) \to (Y, \sigma)$ be a contra \mathscr{I}_g -continuous function of an \mathscr{I}_g connected space (X, τ, \mathscr{I}) onto a topological space (Y, σ) . If possible, let Y be disconnected. Let A and B form a disconnection of Y. Then A and B are clopen and $Y = A \cup B$ where $A \cap B = \phi$. Since f is contra \mathscr{I}_g -continuous, $X = f^{-1}(Y) =$ $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are nonempty \mathscr{I}_g -open sets in X. Also $f^{-1}(A) \cap f^{-1}(B) = \phi$. Hence X is not \mathscr{I}_g -connected. This is a contradiction. Therefore Y is connected. \Box

Corollary 3.29 ([3], Theorem 2.27). A contra *g*-continuous image of a *g*-connected space is connected.

Proof. The proof follows from the theorem 3.28 if $\mathscr{I} = \{\phi\}$.

Lemma 3.30. For an ideal topological space (X, τ, \mathscr{I}) , the following are equivalent.

- (i) X is \mathscr{I}_g -connected.
- (ii) The only subset of X which are both \mathscr{I}_g -open and \mathscr{I}_g -closed are the empty set ϕ and X.

Proof. (i) \Rightarrow (ii). Let *F* be an \mathscr{I}_g -open and \mathscr{I}_g -closed subset of *X*. Then X - F is both \mathscr{I}_g -open and \mathscr{I}_g -closed. Since *X* is \mathscr{I}_g -connected, *X* can be expressed as union of two disjoint nonempty \mathscr{I}_g -open sets *X* and X - F, which implies X - F is empty. (ii) \Rightarrow (i). Suppose $X = U \cup V$ where *U* and *V* are disjoint nonempty \mathscr{I}_g -open subsets of *X*. Then *U* is both \mathscr{I}_g -open and \mathscr{I}_g -closed. By assumption either $U = \phi$ or *X* which contradicts the assumption *U* and *V* are disjoint nonempty \mathscr{I}_g -open subsets of *X*. Therefore *X* is \mathscr{I}_g -connected.

Theorem 3.31. Let $f : (X, \tau, \mathscr{I}) \to (Y, \sigma)$ be a surjective preclosed contra \mathscr{I}_g -continuous function. If X is an \mathscr{I}_g -space, then Y is locally indiscrete.

Proof. Suppose that V is open in Y. By hypothesis f is contra \mathscr{I}_g -continuous and therefore $f^{-1}(V) = U$ is \mathscr{I}_g -closed in X. Since X is an \mathscr{I}_g -space, U is closed in X. Since f is preclosed, then V is also preclosed in Y. Now we have $cl(V) = cl(int(V)) \subset V$. This means that V is closed and hence Y is locally indiscrete.

238

References

- [1] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, *Mem. Fac. Sci. Kochi Univ.* **12**(1991), 5–13.
- [2] M. Caldas and S. Jafari, On g-US sapces, Stud. Cercet. Stiint., Ser. Mat., Univ. Bacau. 14(2005), 13–20.
- [3] M. Caldas, S. Jafari, T. Noiri and M. Simoes, A new generalization of contra-continuity via Levine's g-closed sets, *Chaos, Solitons and Fractals* **32**(2007), 1597–1603.
- [4] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Int. J. Math. Math. Sci. 19(1996), 303–310.
- [5] J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, *Math. Japan* 49(1999), 395–401.
- [6] SN.El-Deeb, I.A. Hasanien, A.S. Mashour and T. Noiri, On p-regular spaces, Bull. Math. de la Soc. Sci. Math. de la Rs Roumanie. 27(1983), 311-315.
- [7] V. Inthumathi, S. Krishnaprakash and M. Rajamani, Strongly-I-Locally Closed sets and Decompositions of *-continuity, *Acta Math. Hungar.* **130**(4) (2011), 358–362.
- [8] D. Jankovic and T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97(1990), 295–310.
- [9] K. Kuratowski, *Topology*, Vol. 1, Academic Press, New York, 1966.
- [10] M. Navaneethakrishnan and J. Paulraj Joseph, g-closed sets in ideal topological spaces, Acta Math. Hungar. 119(2008), 365–371.
- [11] M. Navaneethakrishnan, J. Paulraj Joseph and M. Sivaraj, \mathscr{I}_g -normal and \mathscr{I}_g -regular spaces, *Acta Math Hungar.* **125**(4)(2009), 327–340.
- [12] M. Navaneethakrishnan and M. Sivaraj, Regular generalized closed sets in ideal topological spaces, J. Adv. Res. Pure Math. 2(3)(2010), 24–33.
- [13] T. Nieminen, On Ultrapseudocompact and related topics, Ann. Acad. Sci. Fenn. Ser. A.I. Math. 3(1977), 185–205.
- [14] R. Staum, The algebra of bounded continuous functions into a nonarchimedian field, *Pacific J. Math.* 50(1974), 169–185.
- [15] M.H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41(1937), 375–381.
- [16] K. Vaidyanathaswamy, Set topology, Chelsea Publishing Company, New York, 1960.

M. Rajamani, Department of Mathematics, N.G.M. College, Pollachi 642 001, Tamil Nadu, India. E-mail: rajkarthy@yahoo.com

V. Inthumathi, Department of Mathematics, N.G.M. College, Pollachi 642 001, Tamil Nadu, India. E-mail: inthugops@yahoo.com

V. Chitra, Department of Mathematics, N.G.M. College, Pollachi 642 001, Tamil Nadu, India. E-mail: chitrangmc@gmail.com

Received March 18, 2011 Accepted July 19, 2011