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On Contra Ig-continuity in Ideal Topological Spaces

M. Rajamani, V. Inthumathi, and V. Chitra

Abstract. In this paper, Ig -closed sets and Ig -open sets are used to define and
investigate a new class of functions called contra Ig -continuous functions in ideal
topological spaces. We discuss the relationships with some other related functions.

1. Introduction

An ideal I on a topological space (X ,τ) is a nonempty collection of subsets of
X which satisfies

(i) A∈ I and B ⊂ A implies B ∈ I and
(ii) A∈ I and B ∈ I implies A∪ B ∈ I .

Given a topological space (X ,τ) with an ideal I on X and if P (X ) is the set of
all subsets of X , a set operator (·)∗ : P (X ) → P (X ), called a local function [16]
of A with respect to τ and I is defined as follows: for A ⊂ X , A∗(τ,I ) = {x ∈
X/U ∩ A /∈ I } for every U ∈ τ(x)} where τ(x) = {U ∈ τ/x ∈ U}. A Kuratowski
closure operator cl∗(·) for a topology τ∗(τ,I ) called the ∗-topology, finer than τ
is defined by cl∗(A) = A∪ A∗(τ,I ) [9]. When there is no chance of confusion, we
will simply write A∗ for A∗(τ,I ) and τ∗ for τ∗(τ,I ). If I is an ideal on X then
(X ,τ,I ) is called an ideal topological space. A subset A of an ideal space (X ,τ,I )
is ∗-closed(τ∗-closed) [8] if A∗ ⊂ A. By a space, we always mean a topological space
(X ,τ)with no separation properties assumed. If A⊂ X , cl(A) and int(A)will denote
the closure and interior of A in (X ,τ) respectively. A subset A of (X ,τ) is said to be
regular open [15] (resp. regular closed [15]) if A= int(cl(A)) (resp. A= cl(int(A))).
In this paper, we introduce the notion of contra Ig -continuity in ideal topological
spaces and discuss their properties and give various characterizations.

2. Preliminaries

A subset A of an ideal space (X ,τ,I ) is Ig -closed [10] if A∗ ⊂ U whenever A⊂ U
and U is open. The complement of an Ig -closed set is Ig -open. The family of all
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Ig -open sets is denoted by IGO(X ). A subset of an ideal space (X ,τ,I ) is said
to Ir g -closed [12] if A∗ ⊂ U whenever A ⊂ U and U is regular open. A subset
A is called Ir g -open if X − A is Ir g -closed and every r g-closed set is an Ir g -
closed set. An ideal topological space (X ,τ,I ) is said to be Ig -normal [11] if
each pair of nonempty disjoint closed sets can be seperated by disjoint Ig -open
sets. A function f : (X ,τ,I ) → (Y,σ) is called Ig -continuous [7] if the inverse
image of every closed set in Y is Ig -closed in X . In a topological space (X ,τ), a
function f : (X ,τ) → (Y,σ) is said to be contra continuous [4] if for each open
set V in Y , f −1(V ) is closed in X and f : (X ,τ) → (Y,σ) is said to be contra g-
continuous [3] if for each open set V in Y , f −1(V ) is g-closed in X . A function
f : (X ,τ)→ (Y,σ) is called preclosed [6] if the image of every closed subset of X
is preclosed in Y . A space (X ,τ) is called locally indiscrete [13] if every open set is
closed. A space (X ,τ) is said to be g-space [3](resp. gS-space [3]) if every g-open
set of X is open(resp. semiopen) in X . A space (X ,τ) is said to be g-T2 [2] if for
each pair of distinct points x and y in X there exist two g-open sets U containing
x and V containing y such that U ∩ V = φ. A space (X ,τ) is said to be g-normal
[3] if each pair of nonempty disjoint closed sets can be separated by disjoint g-
open sets. A space (X ,τ) is said to be an Ultra Hausdorff space [14] if for each pair
of distinct points x and y in X there exist two clopen sets U containing x and V
containing y such that U ∩ V = φ. A space (X ,τ) is said to be GO-connected [1] if
X cannot be expressed as two disjoint nonempty g-open sets of X .

3. Contra Ig -continuity

Definition 3.1. A function f : (X ,τ,I )→ (Y,σ) is said to be contra Ig -continuous
if f −1(V ) is Ig -closed in (X ,τ,I ) for each open set V in (Y,σ).

Definition 3.2. A function f : (X ,τ,I ) → (Y,σ) is said to be contra Ir g -
continuous if f −1(V ) is Ir g -closed in (X ,τ,I ) for each open set V in (Y,σ).

Proposition 3.3. Every contra g-continuous function is contra Ig -continuous.

Proof. Let f : (X ,τ,I ) → (Y,σ) be a contra g-continuous function and let V be
any open set in Y . Then, f −1(V ) is g-closed in X . Since every g-closed set is
Ig -closed, f −1(V ) is Ig -closed in X . Therefore f is contra Ig -continuous. ¤

However, converse need not true as seen from the following example.

Example 3.4. Let X = {a, b, c, d}, τ = {φ, {b}, {b, c, d}, X }, σ = {φ, {a}, {c},
{a, c}, X } and I = {φ, {c}}. Then the identity function f : (X ,τ,I ) → (Y,σ) is
contra Ig -continuous but not contra g-continuous.

Remark 3.5. The following example shows that Ig -continuity and contra Ig -
continuity are independent.
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Example 3.6. Let X = {a, b, c}, τ = {φ, {a}, X }, σ = {φ, {b}, {b, c}, X } and
I = {φ, {c}}. Then the identity function f : (X ,τ,I ) → (X ,σ) is contra
Ig -continuous but not Ig -continuous. The function f : (X ,τ,I )→ (X ,σ) defined
by f (a) = c, f (b) = a and f (c) = b is Ig -continuous but not contra Ig -continuous.

Proposition 3.7. Every contra Ig -continuous function is contra Ir g -continuous.

Proof. The proof follows from the fact that every Ig -closed set is Ir g -closed
in X . ¤

Example 3.8. Let X = {a, b, c},τ = {φ, {a}, {c}, {a, c}, X }, σ = {φ, {b}, {a, c}, X }
and I = {φ {c}}. Then the identity function f : (X ,τ,I )→ (X ,σ) is contra Ir g -
continuous but not contra Ig -continuous.

Definition 3.9. A map f : (X ,τ,I ) → (Y,σ) is called contra ∗-continuous if the
inverse image of every open set in (Y,σ) is ∗-closed in (X ,τ,I ).
Proposition 3.10. Every contra ∗-continuous function is contra Ig -continuous.

Proof. Let f : (X ,τ,I ) → (Y,σ) be a contra ∗-continuous function and let V be
any open set in Y . Then, f −1(V ) is ∗-closed in X . Since every ∗-closed set is
Ig -closed, f −1(V ) is Ig -closed in X . ¤

However, converse need not true as seen from the following example.

Example 3.11. Let X = {a, b, c}, τ = {φ, {a}, X }, σ = {φ, {b}, {b, c}, X } and I =
{φ, {c}}. Then the identity function f : (X ,τ,I )→ (X ,σ) is contra Ig -continuous
but not contra ∗-continuous.

Theorem 3.12. Let f : (X ,τ,I ) → (Y,σ) be a function. Then the following are
equivalent:

(i) f is contra Ig -continuous.
(ii) The inverse image of each closed set in Y is Ig -open in X .

(iii) For each point x in X and each closed set V in Y with f (x) ∈ V , there is an
Ig -open set U in X containing x such that f (U)⊂ V .

Proof. (i)⇒(ii). Let F be closed in Y . Then Y − F is open in Y . By definition of
contra Ig -continuous, f −1(Y − F) is Ig -closed in X . But f −1(Y − F) = X − f −1(F).
This implies f −1(F) is Ig -open in X .

(ii)⇒(iii). Let x ∈ X and V be any closed set in Y with f (x) ∈ V . By (ii), f −1(V )
is Ig -open in X . Set U = f −1(V ). Then there is an Ig -open set U in X containing
x such that f (U)⊂ V .

(iii)⇒(i). Let x ∈ X and V be any closed set in Y with f (x) ∈ V . Then Y−V is open
in Y with f (x) ∈ V . By (iii), there is an Ig -open set U in X containing x such that
f (U)⊂ V . This implies U = f −1(V ). Therefore, X −U = X − f −1(V ) = f −1(Y −V )
which is Ig -closed in X . ¤
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Theorem 3.13. Let f : (X ,τ,I ) → (Y,σ) and g : (Y,σ) → (Z ,µ). Then the
following properties hold:

(i) If f is contra Ig -continuous and g is continuous then g ◦ f is contra
Ig -continuous.

(ii) If f is contra Ig -continuous and g is contra continuous then g ◦ f is
Ig -continuous.

(iii) If f is Ig -continuous and g is contra continuous then g ◦ f is contra
Ig -continuous.

Proof. (i) Let V be a closed set in Z . Since g is continuous, g−1(V ) is closed in
Y . Since f is contra Ig -continuous, (g ◦ f )−1(V ) = f −1(g−1(V )) is Ig -open in X .
Therefore g ◦ f is contra Ig -continuous.

(ii) Let V be any closed set in Z . Since g is contra continuous, g−1(V ) is open in
Y . Since f is contra Ig -continuous, (g ◦ f )−1(V ) = f −1(g−1(V )) is Ig -closed in X .
Therefore g ◦ f is Ig -continuous.

(iii) Let V be any closed set in Z . Since g is contra continuous, g−1(V ) is open in Y .
Since f is Ig -continuous, (g ◦ f )−1(V ) = f −1(g−1(V )) is Ig -open in X . Therefore
g ◦ f is contra Ig -continuous. ¤

Theorem 3.14. If a function f : (X ,τ,I )→ (Y,σ) is contra Ig -continuous and Y
is regular, then f is Ig -continuous.

Proof. Let x be an arbitrary point of X and V be an open set of Y containing
f (x). Since Y is regular, there exists an open set W in Y containing f (x) such
that cl(W ) ⊂ V . Since f is contra Ig -continuous, by Theorem 3.12, there exists
an Ig -open set U containing x such that f (U) ⊂ cl(W ). Thus f (U) ⊂ cl(W ) ⊂ V .
Hence f is Ig -continuous. ¤

Definition 3.15. A space (X ,τ,I ) is said to be an Ig -space if every Ig -open set is
∗-open in (X ,τ,I ).
Theorem 3.16. A function f : (X ,τ,I )→ (Y,σ) is contra Ig -continuous and X is
an Ig -space then f is contra ∗-continuous.

Proof. Let V be a closed set in Y . Since f is contra Ig -continuous, f −1(V ) is Ig -
open in X . Since X is an Ig -space, f −1(V ) is ∗-open in X . Therefore f is contra
∗-continuous. ¤

Definition 3.17. An ideal topological space (X ,τ,I ) is said to be Ig -T2 space if
for each pair of distinct points x and y in (X ,τ,I ), there exists an Ig -open set U
containing x and an Ig -open set V containing y such that U ∩ V = φ.

Theorem 3.18. If (X ,τ,I ) is an ideal topological space and for each pair of distinct
points x1,x2 in X , there exists a function f from (X ,τ,I ) into a Urysohn space Y
such that f (x1) 6= f (x2) and f is contra Ig -continuous at x1 and x2, then X is
Ig -T2.
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Proof. Let x1 and x2 be any two distinct points in X . Then by hypothesis, there is a
function f : (X ,τ,I )→ (Y,σ), such that f (x1) 6= f (x2). Let yi = f (x i) for i = 1, 2.
Then y1 6= y2. Since Y is Urysohn, there exists open neighbourhoods Vy1

and Vy2

of y1 and y2 respectively in Y such that cl(Vy1
) ∩ cl(Vy2

) = φ. Since f is contra
Ig -continuous, there exists an Ig -open set Ux i

of x i in X such that f (Ux i
)⊂ cl(Vyi

)
for i = 1, 2. Hence we get Ux1

∩ Ux2
= φ because cl(Vy1

) ∩ cl(Vy2
) = φ. Thus X is

Ig -T2. ¤

Corollary 3.19. If f is a contra Ig -continuous injection of an ideal topological space
(X ,τ,I ) into a Urysohn space (Y,σ), then (X ,τ,I ) is Ig -T2.

Proof. Let x1 and x2 be any pair of distinct points in X . Since f is contra
Ig -continuous and injective, we have f (x1) 6= f (x2). Therefore by Theorem 3.18,
X is Ig -T2. ¤

Corollary 3.20. If f is a contra Ig -continuous injection of an ideal topological space
(X ,τ,I ) into a Ultra Hausdorff space (Y,σ), then (X ,τ,I ) is Ig -T2.

Proof. Let x1 and x2 be any two distinct points in X . Then since f is injective and
Y is Ultra Hausdorff, f (x1) 6= f (x2) and there exists two clopen sets V1 and V2 in
Y such that f (x1) ∈ V1, f (x2) ∈ V2 and V1 ∩ V2 = φ. Then x i ∈ f −1(Vi) ∈ IGO(X )
for i = 1, 2 and f −1(V1)∩ f −1(V2) = φ. Thus X is Ig -T2. ¤

Theorem 3.21. If f : (X ,τ,I )→ (Y,σ) is a contra Ig -continuous, closed injection
and Y is Ultra normal, then (X ,τ,I ) is Ig -normal.

Proof. Let F1 and F2 be disjoint closed subsets of X . Since f is closed and injective,
f (F1) and f (F2) are disjoint closed subsets of Y . Since Y is Ultra normal, f (F1)
and f (F2) are separated by disjoint clopen sets V1 and V2 respectively. Hence
Fi ⊂ f −1(Vi), f −1(Vi) ∈ IGO(X ) for i = 1, 2 and f −1(V1) ∩ f −1(V2) = φ. Thus
X is Ig -normal. ¤

Definition 3.22. A graph G( f ) of a function f : (X ,τ,I ) → (Y,σ) is said to be
contra Ig -closed if for each (x , y) ∈ (X × Y )\G( f ), there exist an U ∈ IGO(X )
containing x and a closed set V of (Y,σ) containing y such that f (U)∩ V = φ.

Theorem 3.23. If f : (X ,τ,I ) → (Y,σ) is contra Ig -continuous and (Y,σ) is
Urysohn, then G( f ) is contra Ig -closed in X × Y .

Proof. Let (x , y) ∈ (X × Y )\G( f ), then f (x) 6= y and there exists open sets
V , W such that f (x) ∈ V , y ∈ W and cl(V ) ∩ cl(W ) = φ. Since f is contra
Ig -continuous there exists U ∈ IGO(X ) containing x such that f (U)⊂ cl(V ). Since
cl(V ) ∩ cl(W ) = φ, we have f (U) ∩ cl(W ) = φ. This shows that G( f ) is contra
Ig -closed in X × Y . ¤

Remark 3.24. The following example shows that the condition Urysohn on the
space (Y,σ) in Theorem 3.23 cannot be dropped.
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Example 3.25. Let X = {a, b, c}, τ = {φ, {a}, X }, σ = {φ, {b}, {b, c}, X } and
I = {φ, {c}}. Clearly X is not a Urysohn space. Also the identity function
f : (X ,τ,I )→ (X ,σ) is contra Ig -continuous but not contra Ig -closed.

Corollary 3.26 ([3], Theorem 2.26). If f : (X ,τ)→ (X ,σ) is contra g-continuous
function and (Y,σ) is a Urysohn space, then G( f ) is contra-g-closed in X × Y .

Proof : The proof follows from the Theorem 3.23 if I = {φ}.
Definition 3.27. An ideal topological space (X ,τ,I ) is said to be Ig -connected
if (X ,τ,I ) cannot be expressed as the union of two disjoint nonempty Ig -open
subsets of (X ,τ,I ).
Theorem 3.28. A contra Ig -continuous image of a Ig -connected space is connected.

Proof. Let f : (X ,τ,I ) → (Y,σ) be a contra Ig -continuous function of an Ig -
connected space (X ,τ,I ) onto a topological space (Y,σ). If possible, let Y be
disconnected. Let A and B form a disconnection of Y . Then A and B are clopen
and Y = A∪ B where A∩ B = φ. Since f is contra Ig -continuous, X = f −1(Y ) =
f −1(A∪ B) = f −1(A) ∪ f −1(B), where f −1(A) and f −1(B) are nonempty Ig -open
sets in X . Also f −1(A) ∩ f −1(B) = φ. Hence X is not Ig -connected. This is a
contradiction. Therefore Y is connected. ¤
Corollary 3.29 ([3], Theorem 2.27). A contra g-continuous image of a g-connected
space is connected.

Proof. The proof follows from the theorem 3.28 if I = {φ}. ¤
Lemma 3.30. For an ideal topological space (X ,τ,I ), the following are equivalent.

(i) X is Ig -connected.
(ii) The only subset of X which are both Ig -open and Ig -closed are the empty set φ

and X .

Proof. (i)⇒(ii). Let F be an Ig -open and Ig -closed subset of X . Then X − F is
both Ig -open and Ig -closed. Since X is Ig -connected, X can be expressed as union
of two disjoint nonempty Ig -open sets X and X − F , which implies X − F is empty.

(ii)⇒(i). Suppose X = U∪V where U and V are disjoint nonempty Ig -open subsets
of X . Then U is both Ig -open and Ig -closed. By assumption either U = φ or X
which contradicts the assumption U and V are disjoint nonempty Ig -open subsets
of X . Therefore X is Ig -connected. ¤
Theorem 3.31. Let f : (X ,τ,I ) → (Y,σ) be a surjective preclosed contra
Ig -continuous function. If X is an Ig -space, then Y is locally indiscrete.

Proof. Suppose that V is open in Y . By hypothesis f is contra Ig -continuous
and therefore f −1(V ) = U is Ig -closed in X . Since X is an Ig -space, U is
closed in X . Since f is preclosed, then V is also preclosed in Y . Now we have
cl(V ) = cl(int(V )) ⊂ V . This means that V is closed and hence Y is locally
indiscrete. ¤
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