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Abstract. Let G be a molecular graph with vertex set V (G) and edge set E(G). In chemical graph
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length of a shortest path between two vertices of G is called distance. In a connected graph G, the
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polynomial. Furthermore, we also compute some eccentricity based Zagreb indices of NAn
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1. Introduction and Preliminary Results

Mathematical chemistry is a branch of theoretical chemistry in which we discuss and predict the
chemical structure by using mathematical tools and does not necessarily refer to the quantum
mechanics. Chemical graph theory is a branch of mathematical chemistry in which we apply
tools of graph theory to model the chemical phenomenon mathematically. This theory plays a
prominent role in the fields of chemical sciences. Molecules and molecular compounds are often
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modeled by molecular graphs. A molecular graph is a graph in which vertices are atoms of a
given molecule and edges are its chemical bonds.

A topological index is a numeric quantity associated with a graph which characterize the
topology of graph and is invariant under graph automorphism. In more precise way, a topological
index Top(G) of a graph, is a number with the property that for every graph H isomorphic to G,
Top(H)=Top(G) [6]. There are some major classes of topological indices such as distance based
topological indices, eccentricity based topological indices, degree based topological indices and
counting related polynomials and indices of graphs.

Let G be a molecular graph with vertex set V (G) and edge set E(G). The vertices of G
denotes atoms and an edge between two vertices denotes the chemical bond between these
vertices. If no vertices in u− v walk are repeated then it is called u− v path in graph G. The
length of a path is the number of edges in it. The distance d(u,v) from vertex u to vertex v is
the length of a shortest u− v path in a graph G where u,v ∈ G. In a connected graph G, the
eccentricity ε(v) of vertex v is the distance between v and a vertex farthest from v in G.

The oldest topological index is Wiener index which was introduced by Harold Wiener when
he was working on boiling point of paraffin, named this index as path number. Later on, the
path number was renamed as Wiener index defined as half sum of the distances between all the
pairs of vertices in a graph [43].

Let G be a graph. Then the Wiener index of G is defined as

W(G)= 1
2

∑
(u,v)

d(u,v) (1.1)

where (u,v) is any ordered pair of vertices in G and d(u,v) is u− v geodesic. An important
eccentricity based topological index of a graph G is the eccentric-connectivity index ξ(G) which
was proposed by Sharma, Goswami, and Madan. The eccentric-connectivity index is defined as

ξ(G)= ∑
u∈V (G)

d(u)ε(u). (1.2)

where d(u) denotes degree of the vertex u and ε(u) denotes the eccentricity of the vertex u.

The eccentric connectivity polynomial is the polynomial version of the eccentric-connectivity
index which was proposed by Alaeiyan, Mojarad and Asadpour. Now we define the eccentric
connectivity polynomial of a graph G, which is defined as [1]

ECP(G, x)= ∑
u∈V (G)

d(u)xε(u). (1.3)

where d(u) denotes degree of the vertex u and ε(u) denotes the eccentricity of the vertex u
where value of x is greater than 1. The relationship between eccentric connectivity polynomial
and eccentric-connectivity index is given by

ECP(G, x)= ξ(G,1)

where ξ(G,1) is the first derivative of ECP(G, x) [7, 28, 29]. When the vertex degrees are not
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taken into account, we obtain the total-eccentricity index of the graph G defined by

ς(G)= ∑
u∈V (G)

ε(u). (1.4)

where ε(u) denotes the eccentricity of the vertex u.

The total eccentricity polynomial is the polynomial version of the total-eccentricity index.
Now we define the total eccentricity polynomial of a graph G, which is defined as

TEP(G, x)= ∑
u∈V (G)

xε(u). (1.5)

It is easy to see that the total-eccentricity index can be obtained from the corresponding
polynomial by evaluating its first derivative at x = 1 [3].

2. NAn
m Nanotube

We consider the m×n quadrilateral section Pn
m with m ≥ 2 hexagons on the top and bottom

sides and n ≥ 2 hexagons on the lateral sides cut from the regular hexagonal lattice L as shown
in Figure 1. If we identify two lateral sides of Pn

m such that we identify the vertices u j
0 and u j

m,
for j = 0,1,2, . . . ,n then we obtain the nanotube NAn

m [6], [13, 14, 17, 30, 31, 37, 40, 44].

Figure 1. NAn
m nanotube
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In this paper, we consider NAn
m nanotube with n = m and we compute eccentric connectivity

polynomial and total eccentricity polynomial of NAn
m nanotube. For the eccentric connectivity

polynomial and total eccentricity polynomial of NAn
m nanotube we have two cases of n when

n ≡ 0(mod2) and when n ≡ 1(mod2).

3. Results for the eccentric connectivity polynomial of NAn
m nanotube

Theorem 3.1. For every n ≡ 0(mod2) consider the graph of G ∼= NAn
m nanotube. Then the

eccentric connectivity polynomial is equal to

ECP(G, x)= 2x3n +4x5 +
n
2 ,n>2∑
m=1

2tx3n−m +4x6 +
n,n>2∑
m= n

2

2tx2n+m

+ ∑
m=0

[
n−2,n>2,k≡0(mod2)∑

k=2
(2tx3n−m−k −4x3n−m−k)

]

+
n
2∑

m=1

[
n,k≡0(mod2)∑

k=2

(
3
2

t2x3n−m−k − 3
2

tx3n−m−k
)]

+
n∑

m> n
2

[
n,k≡0(mod2)∑

k=2

(
3
2

t2x2n+m−k − 3
2

tx2n+m−k
)]

+2x2n+1

+
n
2∑

m=0

[
n−1,k≡1(mod2)∑

k=1

(
3
2

t2x3n−m−k +3tx3n−m−k
)]

+
n−1∑
m= n

2

[
n−1,k≡1(mod2)∑

k=1

(
3
2

t2x2n+m−k −3tx2n+m−k
)]

+ ∑
m=n

[
n−1,k≡1(mod2)∑

k=1
2tx2n+m−k

]
.

Proof. Let G be the graph of NAn
m nanotube. The formula for the eccentric connectivity

polynomial is equal to

ECP(G, x)= ∑
u∈V (G)

d(u)xε(u)

By using the values from Table 1, we get

ECP(G, x)= 1×2× x3n +2×2× x5 +2× t×
n
2 ,n>2∑
m=1

x3n−m +2×2× x6 +2× t×
n,n>2∑
m= n

2

x2n+m

+2× (t−2)× ∑
m=0

[
n−2,n>2,k≡0(mod2)∑

k=2
x3n−m−k

]

+3×
(

t2 − t
2

)
×

n
2∑

m=1

[
n,k≡0(mod2)∑

k=2
x3n−m−k

]
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+3×
(

t2 − t
2

)
×

n∑
m> n

2

[
n,k≡0(mod2)∑

k=2
x2n+m−k

]
+2×1× x2n+1

+3×
(

t2 +2t
2

)
×

n
2∑

m=0

[
n−1,k≡1(mod2)∑

k=1
x3n−m−k

]

+3×
(

t2 −2t
2

)
×

n−1∑
m= n

2

[
n−1,k≡1(mod2)∑

k=1
x2n+m−k

]

+2× t× ∑
m=n

[
n−1∑
k=1

x2n+m−k

]
.

After an easy simplification, we get

ECP(G, x)= 2x3n +4x5 +
n
2 ,n>2∑
m=1

2tx3n−m +4x6 +
n,n>2∑
m= n

2

2tx2n+m

+ ∑
m=0

[
n−2,n>2,k≡0(mod2)∑

k=2
(2tx3n−m−k −4x3n−m−k)

]

+
n
2∑

m=1

[
n,k≡0(mod2)∑

k=2

(
3
2

t2x3n−m−k − 3
2

tx3n−m−k
)]

+
n∑

m> n
2

[
n,k≡0(mod2)∑

k=2

(
3
2

t2x2n+m−k − 3
2

tx2n+m−k
)]

+2x2n+1 +
n
2∑

m=0

[
n−1,k≡1(mod2)∑

k=1

(
3
2

t2x3n−m−k +3tx3n−m−k
)]

+
n−1∑
m= n

2

[
n−1,k≡1(mod2)∑

k=1

(
3
2

t2x2n+m−k −3tx2n+m−k
)]

+ ∑
m=n

[
n−1,k≡1(mod2)∑

k=1
2tx2n+m−k

]
.

Theorem 3.2. For every n ≡ 1(mod2) consider the graph of G ∼= NAn
m nanotube. Then the

eccentric connectivity polynomial is equal to

ECP(G, x)= 4x3n +
n−1

2∑
m=1

(2tx3n−m −2x3n−m)+
n−1∑

m= n+1
2

(2tx2n+m −2x2n+m)

+ ∑
m=0

[
n−1,k≡0(mod2)∑

k=2
(2tx3n−m−k −2x3n−m−k)

]

+ ∑
m=n

[
n−1,k≡0(mod2)∑

k=2
(2tx2n+m−k −2x2n+m−k)

]
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+
n−1

2∑
m=1

[
n−1,k≡0(mod2)∑

k=2

(
3
2

t2x3n−m−k −3tx3n−m−k + 3
2

x3n−m−k
)]

+
n−1∑

m= n+1
2

[
n−1,k≡0(mod2)∑

k=2

(
3
2

t2x2n+m−k −3tx2n+m−k + 3
2

x2n+m−k
)]

+
n−1

2∑
m=0

[
n,k≡1(mod2)∑

k=1

(
3
2

t2x3n−m−k + 3
2

tx3n−m−k
)]

+
n∑

m= n+1
2

[
n,k≡1(mod2)∑

k=1

(
3
2

t2x2n+m−k + 3
2

tx2n+m−k
)]

.

Proof. Let G be the graph of NAn
m nanotube. The formula for the eccentric connectivity

polynomial is equal to,

ECP(G, x)= ∑
u∈V (G)

d(u)xε(u)

By using the values from Table 2, we get

ECP(G, x)= 1×4× x3n +2×
(
2t−2

2

)
×

n−1
2∑

m=1
x3n−m +2×

(
2t−2

2

)
×

n−1∑
m= n+1

2

x2n+m

+2× (t−1)× ∑
m=0

[
n−1,k≡0(mod2)∑

k=2
x3n−m−k

]

+2× (t−1)× ∑
m=n

[
n−1,k≡0(mod2)∑

k=2
x2n+m−k

]

+3×
(

t2 −2t+1
2

)
×

n−1
2∑

m=1

[
n−1,k≡0(mod2)∑

k=2
x3n−m−k

]

+3×
(

t2 −2t+1
2

)
×

n−1∑
m= n+1

2

[
n−1,k≡0(mod2)∑

k=2
x2n+m−k

]

+3×
(

t2 + t
2

)
×

n−1
2∑

m=0

[
n,k≡1(mod2)∑

k=1
x3n−m−k

]

+3×
(

t2 + t
2

)
×

n∑
m= n+1

2

[
n,k≡1(mod2)∑

k=1
x2n+m−k

]
.

After an easy simplification, we get

ECP(G, x)= 4x3n +
n−1

2∑
m=1

(2tx3n−m −2x3n−m)+
n−1∑

m= n+1
2

(2tx2n+m −2x2n+m)

+ ∑
m=0

[
n−1,k≡0(mod2)∑

k=2
(2tx3n−m−k −2x3n−m−k)

]
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+ ∑
m=n

[
n−1,k≡0(mod2)∑

k=2
(2tx2n+m−k −2x2n+m−k)

]

+
n−1

2∑
m=1

[
n−1,k≡0(mod2)∑

k=2

(
3
2

t2x3n−m−k −3tx3n−m−k + 3
2

x3n−m−k
)]

+
n−1∑

m= n+1
2

[
n−1,k≡0(mod2)∑

k=2

(
3
2

t2x2n+m−k −3tx2n+m−k + 3
2

x2n+m−k
)]

+
n−1

2∑
m=0

[
n,k≡1(mod2)∑

k=1

(
3
2

t2x3n−m−k + 3
2

tx3n−m−k
)]

+
n∑

m= n+1
2

[
n,k≡1(mod2)∑

k=1

(
3
2

t2x2n+m−k + 3
2

tx2n+m−k
)]

.

4. Results for the Total Eccentricity Polynomial of NAn
m Nanotube

Theorem 4.1. For every n ≡ 0(mod2) consider the graph of G ∼=NAn
m nanotube. Then the total

eccentricity polynomial is equal to

TEP(G, x)= 2x3n +2x5 +
n
2 ,n>2∑
m=1

tx3n−m +2x6 +
n,n>2∑
m= n

2

tx2n+m

+ ∑
m=0

[
n−2,n>2,k≡0(mod2)∑

k=2
(tx3n−m−k −2x3n−m−k)

]

+
n
2∑

m=1

[
n,k≡0(mod2)∑

k=2

(
1
2

t2x3n−m−k − 1
2

tx3n−m−k
)]

+
n∑

m> n
2

[
n,k≡0(mod2)∑

k=2

(
1
2

t2x2n+m−k − 1
2

tx2n+m−k
)]

+ x2n+1

+
n
2∑

m=0

[
n−1,k≡1(mod2)∑

k=1

(
1
2

t2x3n−m−k + tx3n−m−k
)]

+
n−1∑
m= n

2

[
n−1,k≡1(mod2)∑

k=1

(
1
2

t2x2n+m−k − tx2n+m−k
)]

+ ∑
m=n

[
n−1,k≡1(mod2)∑

k=1
tx2n+m−k

]
.

Proof. Let G be the graph of NAn
m nanotube. The formula for the total eccentricity polynomial

is equal to

TEP(G, x)= ∑
u∈V (G)

xε(u)
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By using the values from Table 1, we get

TEP(G, x)= 2× x3n +2× x5 + t×
n
2 ,n>2∑
m=1

x3n−m +2× x6 + t×
n,n>2∑
m= n

2

x2n+m

+ (t−2)× ∑
m=0

[
n−2,n>2,k≡0(mod2)∑

k=2
x3n−m−k

]

+
(

t2 − t
2

)
×

n
2∑

m=1

[
n,k≡0(mod2)∑

k=2
x3n−m−k

]

+
(

t2 − t
2

)
×

n∑
m> n

2

[
n,k≡0(mod2)∑

k=2
x2n+m−k

]
+1× x2n+1

+
(

t2 +2t
2

)
×

n
2∑

m=0

[
n−1,k≡1(mod2)∑

k=1
x3n−m−k

]

+
(

t2 −2t
2

)
×

n−1∑
m= n

2

[
n−1,k≡1(mod2)∑

k=1
x2n+m−k

]

+ t× ∑
m=n

[
n−1,k≡1(mod2)∑

k=1
x2n+m−k

]
.

After an easy simplification, we get

TEP(G, x)= 2x3n +2x5 +
n
2 ,n>2∑
m=1

tx3n−m +2x6 +
n,n>2∑
m= n

2

tx2n+m

+ ∑
m=0

[
n−2,n>2,k≡0(mod2)∑

k=2
(tx3n−m−k −2x3n−m−k)

]

+
n
2∑

m=1

[
n,k≡0(mod2)∑

k=2

(
1
2

t2x3n−m−k − 1
2

tx3n−m−k
)]

+
n∑

m> n
2

[
n,k≡0(mod2)∑

k=2

(
1
2

t2x2n+m−k − 1
2

tx2n+m−k
)]

+ x2n+1

+
n
2∑

m=0

[
n−1,k≡1(mod2)∑

k=1

(
1
2

t2x3n−m−k + tx3n−m−k
)]

+
n−1∑
m= n

2

[
n−1,k≡1(mod2)∑

k=1

(
1
2

t2x2n+m−k − tx2n+m−k
)]

+ ∑
m=n

[
n−1,k≡1(mod2)∑

k=1
tx2n+m−k

]
.
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Table 1. Vertices partition of NAn
m nanotube based on degree and eccentricity of each vertex when

n ≡ 0(mod2).

Representatives Degree Eccentricity Range Frequency

um
i = um

n−i 1 3n i = 0 , 2

m = 0.

um
i = um

n−i 2 3n−m m = 1 when n = 2, t, where

1≤ m ≤ n
2 when n > 2, t = n or t ≡ 0(mod2)

i = 0. and t 6= 2.

um
i = um

n−i 2 2n+m m = 2 when n = 2, t, where
n
2 ≤ m ≤ n when n > 2, t = n or t ≡ 0(mod2)

i = 0. and t 6= 2.

u0
i = u0

n−i 2 3n−m−k m = 0, t−2,

2≤ k ≤ n−2, n 6= 2 where

where k ≡ 0(mod2), t = n or

1≤ i ≤ n
2 −1, n 6= 2. t ≡ 0(mod2).

um
i = um

n−i 3 3n−m−k 1≤ m ≤ n
2 , t2−t

2 ,

1≤ i ≤ n
2 for all m, where

2≤ k ≤ n where t = n or

k ≡ 0(mod2) for all m. t ≡ 0(mod2).

um
i = um

n−i 3 2n+m−k n
2 ≤ m ≤ n, t2−t

2 ,

1≤ i ≤ n
2 for all m, where

2≤ k ≤ n where t = n or

k ≡ 0(mod2) for all m. t ≡ 0(mod2).

u0
n
2

2 2n+1 m = 0,n ≡ 0(mod2) 1

vm
i = vm

n−i+1 3 3n−m−k 0≤ m ≤ n
2 , t2+2t

2 ,

1≤ i ≤ n
2 for all m, where

1≤ k ≤ n−1 where t = n or

k ≡ 1(mod2) for all m. t ≡ 0(mod2).

vm
i = vm

n−i+1 3 2n+m−k n
2 ≤ m ≤ n−1, t2−2t

2 ,

1≤ i ≤ n
2 for all m, where

1≤ k ≤ n−1 where t = n or

k ≡ 1(mod2) for all m. t ≡ 0(mod2).

vm
i = vm

n−i+1 2 2n+m−k m = n ≡ 0(mod2) t,

1≤ i ≤ n
2 for all m , where

1≤ k ≤ n−1 where t = n or

k ≡ 1(mod2) for all m. t ≡ 0(mod2).
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Table 2. Vertices partition of NAn
m nanotube based on degree and eccentricity of each vertex when

n ≡ 1(mod2).

Representatives Degree Eccentricity Range Frequency

um
i = um

n−i 1 3n i = 0 when m = 0 and m = n 4

um
i = um

n−i 2 3n−m 1≤ m ≤ n−1
2 , 2t−2

2 ,

i = 0 f or where t = n or

all m. t ≡ 1(mod2).

um
i = um

n−i 2 2n+m n+1
2 ≤ m ≤ n−1, 2t−2

2 ,

i = 0 for where t = n or

all m. t ≡ 1(mod2).

u0
i = u0

n−i 2 3n−m−k m = 0, t−1,

1≤ i ≤ n−1
2 for all m, where

2≤ k ≤ n−1 for all m t = n or

where k ≡ 0(mod2). t ≡ 1(mod2).

um
i = um

n−i 2 2n+m−k m = n, t−1,

1≤ i ≤ n−1
2 for all m, where

2≤ k ≤ n−1 for all m t = n or

where k ≡ 0(mod2). t ≡ 1(mod2).

um
i = um

n−i 3 3n−m−k 1≤ m ≤ n−1
2 , t2−2t+1

2 ,

1≤ i ≤ n−1
2 for all m, where

2≤ k ≤ n−1 for all m t = n or

where k ≡ 0(mod2). t ≡ 1(mod2).

um
i = um

n−i 3 2n+m−k n+1
2 ≤ m ≤ n−1, t2−2t+1

2 ,

1≤ i ≤ n−1
2 for all m, where

2≤ k ≤ n−1 for all m t = n or

where k ≡ 0(mod2). t ≡ 1(mod2).

vm
i = vm

n−i+1 3 3n−m−k 0≤ m ≤ n−1
2 , t2+t

2 ,

1≤ i ≤ n+1
2 for all m, where

1≤ k ≤ n for all m t = n or

where k ≡ 1(mod2). t ≡ 1(mod2).

vm
i = vm

n−i+1 3 2n+m−k n+1
2 ≤ m ≤ n, t2+t

2 ,

1≤ i ≤ n+1
2 for all m, where

1≤ k ≤ n for all m t = n or

where k ≡ 1(mod2). t ≡ 1(mod2).
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Theorem 4.2. For every n ≡ 1(mod2) consider the graph of G ∼=NAn
m nanotube. Then the total

eccentricity polynomial is equal to

TEP(G, x)= 4x3n +
n−1

2∑
m=1

(tx3n−m − x3n−m)+
n−1∑

m= n+1
2

(tx2n+m − x2n+m)

+ ∑
m=0

[
n−1,k≡0(mod2)∑

k=2
(tx3n−m−k − x3n−m−k)

]

+ ∑
m=n

[
n−1,k≡0(mod2)∑

k=2
(tx2n+m−k − x2n+m−k)

]

+
n−1∑

m= n+1
2

[
n−1,k≡0(mod2)∑

k=2

(
1
2

t2x2n+m−k − tx2n+m−k + 1
2

x2n+m−k
)]

+ ∑
m=0

[
n,k≡1(mod2)∑

k=1

(
1
2

t2x3n−m−k + 1
2

tx3n−m−k
)]

+
n∑

m= n+1
2

[
n,k≡1(mod2)∑

k=1

(
1
2

t2x2n+m−k + 1
2

tx2n+m−k
)]

.

Proof. Let G be the graph of NAn
m nanotube. The formula for the total eccentricity polynomial

is equal to

TEP(G, x)= ∑
u∈V (G)

xε(u)

By using the values from Table 2 we get

TEP(G, x)= 4× x3n +
(
2t−2

2

)
×

n−1
2∑

m=1
x3n−m +

(
2t−2

2

)
×

n−1∑
m= n+1

2

x2n+m

+ (t−1)× ∑
m=0

[
n−1,k≡0(mod2)∑

k=2
x3n−m−k

]

+ (t−1)× ∑
m=n

[
n−1,k≡0(mod2)∑

k=2
x2n+m−k

]

+
(

t2 −2t+1
2

)
×

n−1
2∑

m=1

[
n−1,k≡0(mod2)∑

k=2
x3n−m−k

]

+
(

t2 −2t+1
2

)
×

n−1∑
m= n+1

2

[
n−1,k≡0(mod2)∑

k=2
x2n+m−k

]

+
(

t2 + t
2

)
×

n−1
2∑

m=0

[
n,k≡1(mod2)∑

k=1
x3n−m−k

]
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+
(

t2 + t
2

)
×

n∑
m= n+1

2

[
n,k≡1(mod2)∑

k=1
x2n+m−k

]
.

After an easy simplification, we get

TEP(G, x)= 4x3n +
n−1

2∑
m=1

(tx3n−m − x3n−m)+
n−1∑

m= n+1
2

(tx2n+m − x2n+m)

+ ∑
m=0

[
n−1,k≡0(mod2)∑

k=2
(tx3n−m−k − x3n−m−k)

]

+ ∑
m=n

[
n−1,k≡0(mod2)∑

k=2
(tx2n+m−k − x2n+m−k)

]

+
n−1∑

m= n+1
2

[
n−1,k≡0(mod2)∑

k=2

(
1
2

t2x2n+m−k − tx2n+m−k + 1
2

x2n+m−k
)]

+ ∑
m=0

[
n,k≡1(mod2)∑

k=1

(
1
2

t2x3n−m−k + 1
2

tx3n−m−k
)]

+
n∑

m= n+1
2

[
n,k≡1(mod2)∑

k=1

(
1
2

t2x2n+m−k + 1
2

tx2n+m−k
)]

.

5. Conclusion
In this paper, we discuss the Eccentric connectivity polynomial, Total eccentricity polynomial
and their relationship with Eccentric connectivity index, Total eccentricity index. We consider
the molecular graph of NAn

m nanotube and we compute Eccentric connectivity polynomial and
Total eccentricity polynomial.
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