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Financial and Economic Aspects of St. Petersburg Paradox

Józsefné Libor

Abstract. This paper reviews some aspects of the history and the economic
application of the St. Petersburg paradox. In the early 1700s Nicolaus and Daniel
Bernoulli formulated a problem in the theory of games of chance, now known as
the St. Petersburg paradox. The mathematically correct infinity entrance fee for
the game is not acceptable for a real person. Examining the paradox we can see,
that there are many-many interesting, economic aspects of it. Some catastrophic
financial situations could have been avoided using the analysis and application
of the St. Petersburg paradox. In this work I show some generalizations and
applications of the paradox mainly in the field of finance and economics. The
studying of the paradox and the applications of it is very useful in the teaching
of probability and statistics in any college of economics. If we see the scientific
aspect, we can say that there are many possibilities, unresolved issues for the
financial researchers, mathematicians in the field of St. Petersburg game.

1. The St. Petersburg Paradox

First let us see the interpretation of this paradox. Peter and Paul play a game
with a regular coin. (The probability of head-tosses and the probability of tail-
tosses are the same: 50-50%.) Paul tosses the coin and Peter pays 2 ducats (or
dollars, or euros, or what you like) if it shows heads on the first toss, 4 ducats if
the first head appears on the second toss, 8 ducats if the first head appears on the
third toss, and so on. So Peter pays 2k ducats if the first head appears on the kth
toss. How much should Peter charge Paul as an entrance fee to this game so that
the game will be fair? (Fair game means that neither of gamblers wins or loses
any money on average.) Surprisingly, the game cannot be made fair, no matter
how large the entrance fee is. Paul is always in a winning position, but as Bernoulli
wrote: “there ought not be a sane man who would not happily sell his chance for
forty ducats”. How can we resolve this conflict? Let us see our data in Table 1,
where x i means the amount of ducats if the first head appears on the ith toss and
pi means the probability of this event.
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Table 1. Payoff values and probabilities

x i 2 4 8 16 32 . . . 2k . . .

pi 1/2 (1/2)2 (1/2)3 (1/2)4 (1/2)5 . . . (1/2)k . . .

For example, let us see the first column. Paul gets 2 ducats if the first tossing is
head. The probability of this equals 0.5. On the second column we can see that Paul
gets 4 ducats if the first toss is tail and only the second one is head. The probability
of this equals 0.5 times 0.5 (because the tosses are independent). Following this,
Paul gets 2k ducats if the first k − 1 tosses are tails but the kth toss is head. The
probability of this equals (1/2)k−1 · (1/2) = (1/2)k. And we can continue it to

infinite. This is right, because the sum of the probabilities equals 1:
∞∑

k=1
(1/2)k = 1.

Now we can calculate the expected value of the payoffs, which will be infinite.

E(x) =
∞∑

i=1

x i pi

= 2 · 1/2+ 4 · (1/2)2 + 8 · (1/2)3 + . . .+ 2k · (1/2)k + . . .

=
∞∑

i=1

1=∞. (1)

So this means that Paul needs to pay an infinite value to Peter as an entrance
fee. However, this is a requirement to which almost no rational person would agree
to or be able to satisfy. We can see this, because if x ≥ 2 then the probability
of winning at least x value equals the following: P(X ≤ x) =

∑
k:2k≤x

(1/2)k =

[log2 x]∑
k=1
(1/2)k = 1 − (1/2)[log2 x] where [a] means the integer part of a: [a] =

max{bεZ , b ≤ a}. Using this, we can give the distribution function:

F(x) = P(X ≤ x)

¨
0, if x < 2,

1− 2−[log2 x], if x ≥ 2.
(2)

So, P(X > x) = 2−[log2 x] as for example the probability of winning greater than
40 ducats equals P(X > 40) = 1/32 ≈ 0.03125, or the probability of winning
a “much bigger” value, for example the probability of winning a value which is
greater than 32, 000 ducats equals about 0.00006. So Paul does not want to risk
a big value (not even 40 ducats!) to enter the game. Although the calculation
of Paul’s expectation is mathematically correct, the paradoxical conclusion was
regarded by many early researchers of probability as unacceptable. It is worth to
mention Keynes’s words [13]: “We are unwilling to be Paul, partly because we do
not believe Peter will pay us if we have good fortune in the tossing, partly because
we do not know what we should do with so much money . . . if we won it, partly
because we do not believe we should ever win it, and partly because we do not
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think would be a rational act to risk an infinite sum or even a very large sum for
an infinitely larger one, whose attainment is infinitely unlikely”.

2. The history of the paradox and some solutions of it

In the early 1700s Nicolaus Bernoulli formulated the above-mentioned problem,
now known as the St. Petersburg paradox. In this early period, the theory
of games of chance concentrated heavily on notions of fairness, equity, and
examples of fair games, and so Bernoulli was surprised and concerned by his
example of a game in which the price of entry appeared to be grossly unfair.
On September 9, 1713, Bernoulli communicated his problem by letter to Pierre
Reymond de Montmort, and this was followed by a series of letters between them.
Montmort could not solve (perhaps did not understand either) the problem, but
later published his correspondence with Bernoulli in the second edition of his
book on games of chance [15]. There, the world could read about Bernoulli’s
paradox for the first time, and since then the problem has fascinated some of the
world’s greatest intellects, for it was clear that standard mathematical approaches
to this problem were not in harmony with common sense reasoning. Gabriel
Cramer (the originator of Cramer’s rule for solving systems of linear equations)
in a letter to Bernoulli written on May 21, 1728, rephrased the problem from
one involving dice to coins. (So this composition of the paradox belongs to his
name.) His main idea was that the feeling of satisfaction does not increase linear-
proportionately with the increase of the amount of money. (Or: the larger the size
of a person’s fortune, the smaller the “moral value” of a given increment in that
fortune.) Cramer proposed alternatives under which the value of a sum of money is
measured through various utility functions, such as the square root, or the inverse
of the amount, or by placing a limit on payout, all of these devices being chosen
so as to lead to a finite expectation. So he estimated the entrance fee between 6
and 25 ducats. Nicolaus was not satisfied with this result so he communicated the
problem to his cousin Daniel.

In 1738, Daniel Bernoulli presented to the Imperial Academy of Sciences
in St. Petersburg an article that announced the paradox to the world. (Some
researchers mistakenly believe that the name of the paradox dates back to this.) In
this historically memorable article Daniel also proposed a solution to the paradox
and expanding Cramer’s thoughts put up the terminology of utility. Economics and
Psychology use and develop this notion permanently nowadays, too. In that paper,
Daniel Bernoulli concluded that the natural choice of utility function should be
the logarithm function [1]. In his opinion if x ducat increases with d x , then the
increase of the utility (feeling of satisfaction) equals only: du = b · d x/x where
b > 0 constant. (If you have got more and more money, a little increase of it will
cause less and less feeling of satisfaction.) Thus, if the gambler has got α starting
ducat, than the moral benefit of winning x amount equals: u(x) = b·ln([α+x]/α).
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So the expected value is not infinite, but E(u(X )) = b · E(ln([α+ x]/α)). So for
example if we have got 0 starting fund (α = 0), than the entrance fee of the game
equals 4 ducats, but if the starting fund is 1, 000 ducats than the fee of the game
equals 11 ducats only.

Euler gave a similar solution, but he did not want to interfere with the war of
the Bernoulli family, so he did not publish it. (Daniel’s father was his teacher and
Daniel got his workplace in St. Petersburg.) In 1754, d’Alembert started to deal
with this problem and published on it many times. He was not on friendly terms
with Daniel Bernoulli, so he did not mention any Bernoulli names in his works.
When he wrote about the paradox, first he named it at full length as “probleme
propose dans le Tome V des Memoires de l’academie de Petersbourg” and later
he omitted one word after the other, so finally the “probleme de Petersbourg”
expression had formulated. So it’s very likely that the name of the paradox dates
back to this. In a letter to Lagrange he admitted his failure in solving the paradox.
There were some other mathematicians who tried to find a good solution, but
the main problem was the following. They tried to use the mathematical laws of
probability to the study of individual events. They tried to guess what the result of
the next, concrete trial was. The only researcher who approached the problem
in the correct way was Condorcet. In his opinion, Paul has to play the game
infinite times to get infinite wins. The problem is not apprehensive, but it is the
limes of similar, apprehensive problems. If we play the game n times, than the
amount of wins depends on n. Buffon took the next step, he had a child play the
St. Petersburg game 2048 times. The sum of Paul’s winning was 20, 104 ducats, so
20104/2048 = 9.81 so about 10 ducats per game. The results of this simulation
are in the Table 2.

Table 2. Buffon’s results

The first head occurs on
the kth tossing (k)

1 2 3 4 5 6 7 8 9

Frequency 1061 494 232 137 56 29 25 8 6

Payoff (2k) 2 4 8 16 32 64 128 256 512

So, based on these empirical frequencies, Buffon concluded that despite the
theoretically expected infinite expectation the St. Petersburg game in practice
becomes fair with an entrance fee of approximately 10 ducats. He thought and
calculated that Paul has to pay n log2 n ducats for n games, so log2 n ducats are
spent per game. Seeing the simulation, Paul has to pay log2 2048 = 11 ducats per
game, that is almost equal to 10, the error is only 1

11
. But if Paul would like to

play the game 1 048 575 times, he would have to pay 20 ducats per game. As
these games would take almost 30 years, we do not need to study this situation.
Therefore, about 10 ducats per game is an acceptable amount.
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Whitworth [21] assumed that prudent gamblers would place at risk a fixed
percentage, rather than a fixed amount, of their funds, and he developed a
procedure for analyzing ventures that involve risk of ruin. The Bernoulli-type
investigations continue in two ways. In the first one Fechner (the founder of
the experimental psychology) set up the Weber-Fechner empirical law. The other
way gave new results in the field of economics, Menger’s study led Neumann
to the formation of the axiom-system of utility. The next mathematical result
belongs to Feller, who proposed a different method to determine entrance fees
which would make the St. Petersburg game fair. Suppose Paul chooses to play
the game repeatedly. After n games have been played, let Rn denote the total
entrance fees and let Sn denote Paul’s accumulated receipts. Let us call the
game asymptotically fair if the ratio Sn

Rn
converges to 1 in probability as n tends

to infinity. Feller proved that the St. Petersburg game becomes asymptotically
fair if Rn = n · log2 n [10] and [11], so if one only allows a finite number
n of trials, then for any fixed ε > 0, P{| Sn

n log2 n
− 1| > ε} → 0 as n → ∞,

where Sn denotes the accumulated winnings in n trials of the St. Petersburg
game. Thereby suggesting that the fair price for n games is n log2 n for large
n. Following on the idea of varying entrance fees as initiated by Feller, a
deterministic sequence of entrance fees for the St. Petersburg game was given
by Steinhaus [17]. To construct this sequence, place twos in alternating empty
places, 2_2_2_2_2_2_2_2_2_2_2_2_2_2_2_ . . . then fill every second empty place
by a four, 242_242_242_242_242_242_242_24 . . . next fill every second remaining
empty space by an eight, and so on 242824216242824232242824216242824 . . ..
Denote by a1, a2, . . . the members of this sequence, and let an be the entrance fee
at the nth repetition of a St. Petersburg game. Steinhaus proved, that the sample
distribution function of a1, a2, . . . converges to the distribution function of our
variable F(x). More recently, Csörgö and Simons provided an extensive discussion
of Steinhaus’s sequence of entrance fees, and there now exists an extensive
literature on asymptotic theory for St. Petersburg games [6]. It is explained in
[4] why n log2 n will not satisfy the banker, and generally no satisfactory solution
can be based on laws of large numbers. Sn has no asymptotic distribution for
any centered and normalized sequences as n→∞ over the entire sequence N of
natural numbers. We can remark that in n games log2 n fee per game is too little,
if Paul passes up his biggest win, but it is too much if he passes up the biggest two
wins. The remarkable article by them reveals new paradoxes within the structure of
the classical St. Petersburg paradox. Their results show that (paradoxically) there
may be a very different outcome if n distinct Pauls play one St. Petersburg game
each than if one Paul plays n games [5]. Many points were raised by researchers
on the problem that “the St. Petersburg paradox enjoys an honored corner in the
memory bank of the cultured analytic mind”. [16] See more historical notes for
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example in [8], notes about the limiting distribution are for example in [19] and
[14]. Nowadays there are some simulating results either, for example in [20].

3. Some economic and financial aspects of the paradox

Many examples of St. Petersburg games and their generalizations are studied in
the statistics, economics, and mathematics literature and in many fields of life. As
I have mentioned, Daniel Bernoulli’s work in 1738 was the basis of the formation
of the modern utility concept that the economists and psychologists and other
researchers use even today [2]. But for example an interesting application of a
modified St. Petersburg game is a popular television game show, Who Wants to
be a Millionaire? I think that everybody knows it. Moreover, we can mention the
so-called “matringale strategy”, that many gamblers like to use. In this game we
play against the bank with a 50% chance to win. If we lose in the first game, we
double the bet. If we lose in the second game again, we also double the previous
bet, and so on, until we win. If our first bet equals A dollar and we lose in the first
n− 1 game but we win in the nth game, then our winning amount equals A · 2n,
but we had to pay out A(1+2+4+ ...+2n−1) = A(2n−1) dollars. So our benefit is
A dollar. It seems to be a good strategy, but there are some problems. Usually we
have not got almost infinite money (perhaps we win in “infinite”), and if we have
a lot of money then to win A dollars, does not matter. Last but not least, of course
the casinos know about this strategy so they limit the amount of bets.

Let us see some special St. Petersburg games. If there are two players (“two
Pauls”) we can see, that the averaging strategy is better for both Pauls than the
individualistic strategy. It means that 1

2
X1 +

1
2
X2 are stochastically larger than the

individual winnings X1 and X2. How much better is the averaging strategy? The
averaging strategy provides an extra ducat of added value for each of both Pauls in
comparison with their individualistic strategy. Is this (averaging) strategy good for
three players either? Surprisingly the answer is not, or not in this way. Seeing the
previous averaging strategy we can say that the results are incomparable. But we
(or the three Pauls) can use other pooling strategies. In the first one each Paul gives
all of his winnings to the other two Pauls, half to each. Under this strategy Paul1
ends up with 1

2
X2 +

1
2
X3, Paul2 with 1

2
X1 +

1
2
X3 and Paul3 with 1

2
X1 +

1
2
X2. This

strategy provides one ducat of added value for each of the three Pauls. Or, there is
another strategy. In this each Paul shares one-half of his winnings evenly with the
other two Pauls. Under this strategy, Paul1 ends up with 1

2
X1 +

1
4
X2 +

1
4
X3, Paul2

with 1
2
X2+

1
4
X1+

1
4
X3 and Paul3 with 1

2
X3+

1
4
X1+

1
4
X2. This strategy provides 1.5

ducats of added value for each of the three Pauls. What about if we have got more
than 3 players? Are there any good strategies for each Pauls? Let n players (Pauls)
be, and their individual winnings are X1, X2, . . . , Xn. The focus of attention here is
on a pooling strategy pn = (p1,n, . . . , pn,n) consisting of non-negative components
that sum to unity, to which all players agree before any of them plays. A strategy
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pn is called admissible if each of its components is either zero or an integer power
of 2. Csörgö and Simons proved in [7] that if pn is admissible, then the added value
equals the entropy of pn: H(pn) =−{p1,n log2 p1,n + . . .+ pn,n log2 pn,n}. Moreover,
the entropy is bounded above by Hn = [log2 n] + 2〈log2 n〉 − 1. (Here [.] means
the integer part and 〈.〉 means the fractional part of an expression.) The first ten
values of Hn, n ≥ 2, with their maximizing strategies are in Table 3. The evolving
pattern as n grows is that every time n increases by one, a single component
1
2 j with smaller exponent j is replaced by two components, each equals to 1

2 j+1 .
Significantly, the added value represents, simultaneously for all Pauls, a genuine
anticipated benefit, arising solely from their agreement to use pooling strategy
pn, in no way is this “magic”. Paradoxically, all Pauls and Peter know that Pauls’
total winnings are Sn = X1 + X2 + . . . + Xn, the same amount with or without
the pooling strategy. So we can say in economic terms: through cooperation, the
microeconomic perspective is sweetened for all Pauls while the macroeconomic
perspective is unaltered.

Table 3. Some maximizing strategies

H2 = 1 p∗2 = (
1
2
, 1

2
)

H3 = 1 1
2

p∗3 = (
1
2
, 1

4
, 1

4
)

H4 = 2 p∗4 = (
1
4
, 1

4
, 1

4
, 1

4
)

H5 = 2 1
4

p∗5 = (
1
4
, 1

4
, 1

4
, 1

8
, 1

8
)

H6 = 2 2
4

p∗6 = (
1
4
, 1

4
, 1

8
, 1

8
, 1

8
, 1

8
)

H7 = 2 3
4

p∗7 = (
1
4
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
)

H8 = 3 p∗8 = (
1
8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
)

H9 = 3 1
8

p∗9 = (
1
8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

16
, 1

16
)

H10 = 3 2
8

p∗10 = (
1
8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

16
, 1

16
, 1

16
, 1

16
)

H11 = 3 3
8

p∗11 = (
1
8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

16
, 1

16
, 1

16
, 1

16
, 1

16
, 1

16
)

The study of another version of the paradox leads us the so called constantly
rebalanced portfolio. Of course the best strategy depends on the optimality criteria.
Breiman [3] introduced the so called log-optimal portfolio as a good optimality
criterion. In each round we maximize the expectation E ln〈b,Xn〉. Where b is the
portfolio vector, the jth component of it denotes the proportion of the investor’s
capital invested in financial instrument j. The market vector in the nth round is
Xn, and 〈.〉 means the inner product. Györfi and Kevei examined the optimality
in [12]. Now let us suppose that a player starts with initial capital S0 = 1
and there is a sequence of simple St. Petersburg games, where for each simple
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game the player reinvest his capital. The name of this problem is sequential
St. Petersburg Game. If S(c)n−1 is the capital after the (n− 1)-th simple game then

the invested capital is S(c)n−1(1 − c), while S(c)n−1c is the proportional cost of the
simple game with commission factor 0 < c < 1. So the capital after the nth

round equals S(c)n = S(c)n−1(1 − c)Xn = S0(1 − c)n
n∏

i=1
X i = (1 − c)n

n∏
i=1

X i . Because

of this (multiplicative definition) S(c)n has exponential trend Sc
n = 2nW (c)

n ≈ 2nW (c)
,

with average growth rate W (c)
n := 1

n
log2 S(c)n and with asymptotic average growth

rate W (c) := lim
n→∞

1
n

log2 S(c)n . Using the strong law of large numbers W (c) =

log2(1 − c) + E{log2 X1}. The commission factor c is called fair if W (c) = 0 (the
growth rate of the sequential game equals 0), where from we can calculate the

value of c. log2(1 − c) = −E{log2 X1} = −
∞∑

k=1
k · 2−k = −2, so c = 3

4
. They

studied the portfolio game with two, three and more St. Petersburg components
either [12].

If instead of tossing coins, Paul organizes a corporation in a growth industry
and offers Peter stock, the latter might be deterred from paying the full discounted
value by any of the considerations that would deter him from paying the
full mathematical expectation to enter the Petersburg game. After Székely and
Richards [18] if we consider the financial aspect of the paradox, our conclusion
can be that the run-up in stock prices and the subsequent declines in 2000 could
have been avoided by an analysis and application of the paradox. Let us consider
a modified St Petersburg game in which Peter is a growth company and Paul is a
prospective purchaser of Peter’s stock. We assume that the probability of tossing
head is 1

(1+i)
, i > 0, and the probability of tossing tail is i

(1+i)
. Next suppose that

the payoffs are a series of increasing payments in which Peter pays Paul D ducats
if the first toss is head, D(1 + g) ducats if the second toss is head, D(1 + g)2 if
the third toss is head, and so on, and this continues until the toss result is head,
at which point the game ends. If k tosses are needed for the game to end then

the total payment to Paul is
k−2∑
j=0

D(1 + g) j = D[(1+g)k−1−1]
g

. This payment occurs

with probability i
(1+i)k

. As Durand [9] observed, Paul’s expected payoff is given

by the following double summation
∞∑

k=1

i
(i+1)k

k−2∑
j=0

D(1 + g) j . This is evaluated by

substituting for the inner sum the closed form expression, so we find that Paul’s
expected payoff is the following

∞∑

k=1

D(1+ g)k−1

(1+ i)k
=

¨
D

i−g
, if g < i,

∞, if g ≥ i.
(3)

In the context of appraising the values of financial securities, the parameter
i represents a compound interest rate, equivalently, the present value of a loan
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of one dollar to be repaid one year in the future is 1
(1+i)

. In the appraisal of fair
value for a company’s shares, g represents the growth rate of the company as
measured by the compound increase in revenue per share. Denote by En Peter’s
earnings (or profits) per share in year n, and let Bn denote Peter’s book value (or
net asset value) per share in the same year. Let Dn be the total of Peter’s paid-out
dividends per share in year n. It is clear that changes in book value from year-to-
year are equal to the difference between earnings and dividends paid. So, for all
n≥ 1, Bn+1− Bn = En− Dn. In estimating fair value for Peter’s stock, it is common
practice for Paul to assume that the ratios r = En

Bn
and p = Dn

En
are independent of n.

This assumption implies that the change in book value from year n to year n+ 1
is a constant multiple of En. So Bn+1 − Bn = En − Dn = (1− p)En = (1− p)rBn.
Therefore, Peter’s dividends, book value, and earnings all are growing at a constant
rate, g = (1−p)r. In this context the sum represents a perpetual series of dividend
payments, starting at D ducats, growing at a constant rate g, and discounted at
rate i in perpetuity. So, if i > g, then the sum converges to D1

(i−g)
= pE1

(i−g)
, which

represents an estimate of fair value for one share of Peter’s stock. If i ≤ g, then
the formula diverges, and we now have a form of the St. Petersburg paradox in
which the practice of discounting future dividends at a uniform rate in perpetuity
leads to a paradoxical result. The St. Petersburg paradox explains some of the
unprecedented increases in the prices of high-tech growth stocks in the late 1990s.
During that period the Federal Reserve System’s discount rate was near a historical
low, so i was very small. Moreover, purchasers of growth stocks assumed that g,
the growth rate of a typical high-tech company, would remain high in perpetuity.
The outcome was that i� g, indeed, even more extreme was that for many high-
tech companies, i

g
≈ 0. Having applied our formula to obtain exorbitant estimated

valuations for many high-tech growth stocks, stock purchasers bought avidly,
thereby forcing prices to extreme levels. By late 2000, stock prices underwent
the “prolonged contractions” with subsequent unprecedented losses to corporate
and individual stock buyers. Three years later, many formerly avidly sought-after
high-tech companies and mutual funds were defunct. See more applications in
insurance for example in [9].

I close this paper with a comment from Mark Twain. He wrote in Pudd’nhead
Wilson’s Calendar: “October. This is one of the peculiarly dangerous months to
speculate in stocks in. The others are July, January, September, April, November,
May, March, June, December, August and February”.
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