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Abstract. Reducing the transmission cost while maintaining the quality of image data is the most
challenging part in data transmission. In this paper, we report the possibility of improving the quality
of image reconstruction by using modified singular value decomposition (SVD) and binary tree coding
with adaptive scanning order (BTCA) for grayscale image compression. This method uses modified
rank one updated SVD as a pre-processing step for binary tree coding to increase the quality of the
reconstructed image. The high energy compaction in SVD process offers high image quality with
less compression and is requires more number of bits for reconstruction. BTCA compression, also
gives high image quality by coding more significant coefficients using adaptive scanning order from
bottom to top with high compression rate. The proposed method uses both SVD and BTC for image
compression and is tested with several test images and results are compared with those of SPIHT,
JPEG, JPEG2000 and BTCA. The results show significant improvement in PSNR at high bitrates as
compared to other methods.
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1. Introduction

Digital storage and transmission bandwidth of large-sized image data as obtained in remote
sensing and multimedia applications are extremely reliant on image compression techniques
[17]. The aim is to represent large size image data with the reduced number of bits in order
to speed up the communication. The image compression is classified into lossy and lossless
compression, based on the quality of a reconstructed image. If the reconstructed image resembles
the original image then it is called as lossless, otherwise lossy compression [22, 24]. The
lossy compression schemes have become popular by achieving high compression ratio and
transmission rate, by neglecting the subjective redundancy in still images. Hence, it achieves a
tradeoff between compression ratio and image quality [11,12]. Several lossy image compression
techniques follow transform based compression method, because they transform the signals
into a few highly de-correlated expansions of coefficients, which will reduce the redundancy in
image representation, and also increases the compression ratio and quality of reconstructed
image [8]. Most popular compression algorithms like JPEG and JPEG2000 introduced by joint
photographic experts group uses discrete cosine transform (DCT) and wavelet transforms for
image compression [22]. DCT based compression techniques suffer due to the blocking of an
artifact, but multiresolution and overlapping nature of wavelet alleviates the blocking artifact
and creates superior energy compaction [16]. Lossy compression is popular in many multimedia
and remote sensing applications. A lossy image compression approaches, like Embedded coding
of an image using zero blocks of wavelet coefficients (EZBC) [9], set partition hierarchical tree
(SPIHT) [21], spherical representation (SPHE) [3], hierarchical classification (HIC) [2], use
wavelets.

The SVD is a powerful numerical tool widely used in image compression and data hiding.
The SVD factorizes a matrix into three component matrices, called left singular vectors, singular
values in diagonal, and right singular vectors [5, 6, 15]. During refactorization, some of the
singular values are neglected for reconstruction and it results in the compression of the image.
Many attempts have been made to hybridize this SVD with many lossy compression methods and
yielded significant improvement in image quality [13,18,26]. A hybrid compression algorithm
proposed by A.M. Rufai [20], using SVD and wavelet difference reduction (WDR) shows some
improvement in image quality.

This paper is organized as follows: The proposed lossy compression algorithm is presented
in Section 2. The experimental results and comparison with other methods are tabulated and
discussed in Section 3, followed by conclusion in Section 4.

2. Proposed Compression Method

2.1 Modified Rank One Updated SVD

An image is a two-dimensional matrix of m×n pixels, each pixel represents its intensity value.
The SVD is applied to the matrix representing the image to get UΣV T , where U and V are the
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orthonormal matrices of m×m and n×n, respectively, Σ is a diagonal nonnegative matrix of
m×n. The non-zero diagonal elements of Σ determine the rank of the original matrix. Selection
of less number of ranks to approximate the original image is required for good compression.
Blocks based process for the complete image reduces the ranks and which helps to reconstruct
high-quality image [7].

In modified rank one updated SVD, the ranks are reduced by subtracting the median value
of original image before performing the SVD and then added after reconstruction. Additional
ranks are further reduced by dividing the image into sub-block to make use of the irregular
complication of the original image. Appropriate ranks have been selected adaptively for each
sub-block by specifying the percentage of the sum of singular values instead of a fixed value [4].
For image Io, modified rank one updated SVD process is expressed as:

For original Image:

Io −median(Io)=UΣV T , (1)

where U is m by n, V is n by n, and Σ= diag(τ1,τ2, . . .τk,0, . . . ,0).

Specified percent age=
(
τ1 +τ2 +τ3 + . . .+τk1

)
(τ1 +τ2 +τ3 + . . .+τk)

, (2)

where k1 is rank for each sub-blocks of image.

Reconstructed Image:

I1
o =UΣ1V T +median(Io) , (3)

where U is m by k1, V is k1 by n, and Σ1 = diag(τ1,τ2,τ3, . . . ,τk1).

This process compacts the distribution of singular values. When a sub-block contains the
complex image information, its singular values are scattered out. Table 1, shows that how
the average ranks and the percentage of ranks are used for the 8×8 block of peppers image
using the median based rank-one update from 25 to 85 percent of singular value. Perceived
values from 25 to 70 percentages of sum of singular values use only one rank for all sub-blocks.
This indicates that high compression is achieved without affecting the psycho-visual quality as
shown in Figure 1.

Table 1. Percentage of ranks obtained for specified singular values to reconstruct pepper image (8×8
block)

% sum of singular values Average ranks Average % of ranks

85 2.238 0.279

70 1.022 0.127

55 1.000 0.125

40 1.000 0.125

25 1.000 0.125
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Figure 1. (a) original ‘peppers’ image of size 512×512 reconstructed with percentages of ranks (b) 85%
of ranks, (c) 70% of ranks, (d) 55% of ranks, (e) 40 % of ranks, (f) 25% of ranks

2.2 Binary Tree Coding with Adaptive Scanning Order

The wavelet decomposition distributes the energy of subband into clusters, hence coding of
wavelet information becomes more important in image compression. In binary tree coding, the
wavelet coefficients are divided into significant and insignificant sub-blocks (i.e. code block)
based on the threshold and assign them a binary bit for representations.

In binary tree coding algorithm, we consider a code block ‘S ’ of wavelet image with the size of
2N×2N and is converted into a one-dimensional indexed array using Morton scanning order [27].
Then the binary tree is constructed from bottom to top with node λ(k), where 1≤ k ≤ 2×S. The
bottom level of the binary tree consists all wavelet coefficients of Morton scanning order. Upper
levels of the tree are defined as follows:

λ(k)=max {λ(2k),λ(2k+1)} , for 1≤ k ≤ S,

where λ(2k) and λ(2k+1) are the offspring of λ(k) and tree depth is P = N + N +1. After
construction of binary tree for each code blocks, span the tree by depth, from top to bottom of
the sub tree in a bit plane. If tree node is insignificant it is coded with “0” otherwise with “1”,
and the process is repeated for its two offspring. If the process reaches the bottom level and then
corresponding coefficient becomes significant, then its sign is coded. It allows us to concentrate
on areas of high energy and also codes the ‘zero pixels’ compactly. The wavelet coefficients
of edges are the treasure of significant coefficients with high magnitude, but they gradually
change in natural images. Hence adaptive scanning of this significant coefficient along with it’s
neighbor are effectively encodes edges and improves the image quality [10]. In this proposed
algorithm entropy coding for encoded bit stream is avoided to speed up the execution process.
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Figure 2. Pipelined structure of proposed image compression method

The detailed steps of the proposed method (Figure 2) described in two parts with functions
Span_MSVD, Span_depth and Span_level, where I is 8-bit grayscale image matrix. Ending
percentage (EP) is the Specified percentage of ranks used for reconstruction.

The original image is pre-processed by modified rank one updated SVD.

FunctionCode= span_MSVD(L,Ep,Block,size)

• Calculate the median m of I and Im = I −m.

• Divide the Im into sub-blocks for defined block size 8×8.

• Apply SVD for each block and calculate the average percentage of ranks (PR).

◦ if PR ≤ EP

¦ Ranks used for reconstruction.

◦ else

¦ Neglect the ranks.

• Recombine the blocks into Im.

• Im = I +m.

After MSVD process reconstructed image is subjected to wavelet decomposition by Cohen-
Daubechies-Feauveau (CDF 9/7) tap wavelet filter. The wavelet coefficients are under Morton
scanning order gives the indexed array for the binary tree, where k is the index of the node of a
binary tree, and Tb is the threshold, T0 = 2[log2 T(1)] and Tb = T0

2b .

1: FunctionCode= span_depth(λ,k,Tb)

• if λ(k) coded with significant with the large threshold value, λ(k)≥ Tk−1

◦ if k ≤ S
¦ Jl=Span_depth(λ,2k,Tb)
¦ Jr=Span_depth(λ,2k+1,Tb)
¦ code= Jl∪Jr

◦ else

¦ code= {sign(V (k− s))}
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• Else if λ(k) has a significant parent and the neighbors of λ(k) has just been coded
with insignificant, namely, k.1 and tmod2= 1 λ(k−1)/Tb,

• if k < S,

¦ Jl=Span_depth(λ,2k,Tb)
¦ Jr=Span_depth(λ,2k+1,Tb)
¦ code= Jl∪Jr

• else
¦ code= {sign(V (k− s))}

• Else if λ(k)≥ Tb

◦ if k < S,

¦ Jl=Span_depth(λ,2k,Tb)
¦ Jr=Span_depth(λ,2k+1,Tb)
¦ code= {1}∪Jl∪Jr

◦ else
¦ code= {1}∪ {sign(v(k−S)}

• Else

◦ code= {0}.

2: For adaptive scanning, after spanning the tree by depth with Span_depth(λ,1,T0) the
function we obtain the previously scanned significant nodes with a threshold {TZ |Z ≥ 0}.
From bottom to top of the tree, find the brother of previously significant nodes. For depth
n = N , repeat up to n > 1

• Functioncode=Span_level(TZ)

For K =
n−1∑
i=1

2i +1 to
n∑

i=0
2i

• ck = {·} if λ(k)≥ Tk−1,

◦ if kmod2= 0 and λ(k+1)< TZ−1,
then ck =Span_depth(λ,k+1,TZ);

else if kmod2= 1 and λ(k−1)< TZ−1,
then ck =Span_depth(λ,k−1,TZ−1);

• code = {code, ck}
• n = n−1.

The above function of binary tree coding is the recursive function for adaptive scanning order.
Here we have used the non recursive function to accelerate the process for each bit plane.

3. Experiment Results and Discussion

The proposed compression algorithm was tested on 8-bit grayscale (512×512) Barbara, Lena,
Goldhill, Cameraman, Jet-plane, Peppers images. Tables 2–7, show, the comparison of the
proposed method (decomposed at level 5) with SPIHT, BTC (without entropy coding), JPEG and
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JPEG2000 in terms of PSNR for the different bit per pixel (BPP) respectively. The PSNR values
of SPIHT, JPEG, and JPEG2000 compression were obtained from [1] and same tested images
are used for consistency check. For maximum compression in MSVD, we use 70 to 75 percentage
ranks for reconstruction which boosts the image quality for binary tree coding. Hence the PSNR
values of SVD+BTC in tables are comparatively higher than BTC. Figure 3 shows the Lena
image compressed by proposed technique at different bit rates.

Table 2. Comparison of PSNR values for Barbara image at different bit per pixel (BPP)

BPP SPIHT BTC JPEG JPEG2000 SVD+BTC

0.125 24.84 19.20 23.69 24.87 28.20
0.250 27.57 25.63 26.42 28.17 28.20
0.500 31.39 30.54 30.53 31.82 32.42
1.000 36.41 36.58 35.60 36.68 37.76
1.250 39.80 36.58 39.03 39.40 41.56

Table 3. Comparison of PSNR values for Lena image at different bit per pixel (BPP)

BPP SPIHT BTC JPEG JPEG2000 SVD+BTC

0.125 31.10 26.14 28.45 30.93 29.70
0.250 34.13 29.56 31.90 34.03 33.10
0.500 37.27 35.14 35.51 37.16 38.48
1.000 40.45 40.85 38.78 40.36 43.34
1.250 42.00 42.13 41.45 42.00 43.34

Table 4. Comparison of PSNR values for Goldhill image at different bit per pixel (BPP)

BPP SPIHT BTC JPEG JPEG2000 SVD+BTC

0.125 28.47 23.50 27.25 28.48 26.76
0.250 30.55 28.50 29.47 30.58 31.83
0.500 33.12 32.90 32.12 33.27 36.87
1.000 36.54 32.94 35.57 36.81 36.87
1.250 39.60 39.10 40.12 40.45 43.00

Table 5. Comparison of PSNR values for Cameramen image at different bit per pixel (BPP)

BPP SPIHT BTC JPEG JPEG2000 SVD+BTC

0.125 25.82 28.23 24.88 25.57 32.34
0.250 29.12 31.16 28.20 29.30 35.27
0.500 33.00 32.89 32.11 33.28 37.71
1.000 37.96 33.82 36.29 38.08 38.82
1.250 39.85 33.82 39.42 39.75 39.72
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Table 6. Comparison of PSNR values for Jet plane image at different bit per pixel (BPP)

BPP SPIHT BTC JPEG JPEG2000 SVD+BTC

0.125 27.27 27.37 26.05 27.23 32.67
0.250 29.89 30.57 28.83 29.79 36.08
0.500 33.54 33.80 32.47 33.54 39.42
1.000 38.24 37.66 37.11 38.30 44.02
1.250 38.96 37.59 39.02 40.42 44.04

Table 7. Comparison of PSNR values for pepper image at different bit per pixel (BPP)

BPP SPIHT BTC JPEG JPEG2000 SVD+BTC

0.125 34.24 28.06 29.45 33.83 31.26
0.250 35.44 31.35 31.58 36.03 34.95
0.500 38.86 35.57 35.83 39.96 39.33
1.000 41.45 40.78 38.75 42.36 43.90
1.250 42.15 40.98 39.95 42.87 43.91
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Figure 3. (a) Original Lena uncompressed image (b) Compressed at 0.125 BPP; (c) Compressed at 0.250
BPP; (d) Compressed at 0.500 BPP; (e) Compressed at 1.00 BPP; (f) Compressed at 1.250 BPP using
proposed method
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4. Conclusion

This paper shows, the improvement of image quality in binary tree coding method by using
modified singular value decomposition. The proposed method uses optimum percentage sum
of singular values for reconstruction in SVD and adaptive scanning of prior significant pixels
during reconstruction in BTC process, which leads to improved PSNR in compressed images.
However, in some images like Lena, Goldhill, and peppers, the PSNR values at low BPP is
lesser than the JPEG2000 because of a large number of edges. A number of edges in the image
lead to the use of more number of significant bits and hence PSNR gets tainted. In general, the
proposed algorithm shows significant improvement in PSNR of images at higher bit per pixel as
compared to other methods.

Competing Interests

The authors declare that they have no competing interests.

Authors’ Contributions

All the authors contributed significantly in writing this article. The authors read and approved
the final manuscript.

References
[1] K. Ahmadi, A.Y. Javid and E. Salari, An efficient compression scheme based on adaptive

thresholding in wavelet domain using particle swarm optimization, Journal of Signal Processing:
Image Communication 32 (2012), 33 – 39.

[2] H.F. Ates and E. Tamer, Hierarchical quantization indexing for wavelet and wavelet packet image
coding, IEEE Trans. Image Process. 25 (2) (2010), 111 – 120.

[3] H.F. Ates and M.T. Orchard, Spherical coding algorithm for wavelet image compression, IEEE
Trans. Image process., Geosci. Remote Sens. 18 (5) (2009), 1015 – 1024.

[4] M. Brand, Fast low-rank modifications of the thin singular value decomposition, J. Linear Algebra,
and its Applications 415 (2006), 20 – 30.

[5] C.-C. Chang, P. Tsai and C.-C. Lin, SVD-based digital image watermarking scheme, Pattern Recog.
Lett. 26 (2005), 1577 – 86.

[6] C.-C. Chang, Y.-S. Hu and C.-C. Lin, A digital watermarking scheme based on singular
value decomposition, in B. Chen, M. Paterson, G. Zhang (editors), Combinatorics, Algorithms,
Probabilistic and Experimental Methodologies, Berlin — Heidelberg, Springer, pp. 82 – 93 (2007).

[7] J. Chen, Image compression with SVD, ECS 29K, Scientific Computation, URL: http://fourier.
eng.hmc.edu/e161/lectures/svdcompression.html#Aase99 (December 13, 2000).

[8] F. Garcia-Vilchez, J. Munoz-Mari, M. Zortea, I. Blanes, V. Gonzalez-Ruiz, G. Camps-Valls, A. Plaza
and J. Serra-Sagrista, On the impact of lossy compression on hyperspectral image classification
and unmixing, IEEE Geosci. Remote Sens. Lett. 8 (2011), 253 – 257.

[9] S.T. Hsiang and J.W. Woods, Embedded image coding using Zero block of subband/wavelet
coefficients and context modeling, in Proc. Data compress. Conf., Washington, DC, pp. 83 – 92
(2001).

Journal of Informatics and Mathematical Sciences, Vol. 10, No. 1 & 2, pp. 109–118, 2018

http://fourier.eng.hmc.edu/ e161/lectures/svdcompression.html#Aase99
http://fourier.eng.hmc.edu/ e161/lectures/svdcompression.html#Aase99


118 Improved Binary Tree Coding for Image Compression. . . : Naveen Kumar R. et al.

[10] K.-K. Huang and D.-Q. Dai, A new on-board image codec based on binary tree with adaptive
scanning order in scan-based mode, IEEE Trans. on Geosci. and Remote Sens. 50 (10) (2012), 3737
– 3750.

[11] N. Jayant and P. Noll, Digital Coding of Waveforms: Principles and Applications to Speech and
Video, Englewood Cliffs, NJ: Prentice-Hall (1984).

[12] N. Jayant, J. Johnston and R. Safranek, Signal compression based on models of human perception,
Proc. IEEE 81 (1993), 1385 – 1422.

[13] S.K. Jha and R.D.S. Yadava, Denoising by singular value decomposition and its application to
electronic nose data processing, IEEE Sensor Journal 11 (1) (2011), 35 – 44.

[14] R. Kumar, A. Kumar and G.K. Singh, A hybrid method based on singular value decomposition
and embedded zero tree wavelet technique for ECG signal compression, J. Computer Methods, and
Programs in Biomedicine 129 (2016), 135 – 148.

[15] C.-C. Lai, A digital watermarking scheme based on singular value decomposition and tiny genetic
algorithm, Digital Signal Process 21 (2006), 522 – 527.

[16] R. Neelamani, R. de Queiroz, Z. Fan, S. Dash and R.G. Baraniuk, Jpeg compression history
estimation for color images, IEEE Trans. on Image Processing 15 (6) (2006), 1365 – 1378.

[17] A. Plaza, J.M. Bioucas-Dias, A. Simic and W.J. Blackwell, Foreword to the Special Issue on
Hyperspectral Image and Signal Processing, IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 5 (2) (2012), 347 – 353.

[18] G.H. Polub and C.F. Van Loan, Matrix Computations, 3rd edition, John Hopkins University Press
(1996).

[19] M. Rabbani and R. Joshi, An overview of JPEG2000 still image compression standard, J. Signal
Processing: Image Communication 17 (2002), 3 – 48.

[20] A.M. Rufai and G.A.H. Demirel, Lossy image compression using singular value decomposition and
Wavelet difference reduction, J. Digital Signal Processing 24 (2014), 117 – 123.

[21] A. Said and W.A. Perlman, New, fast, and efficient image codec based on set partitioning in
hierarchical tree, IEEE Trans. Circuit and Systems for Video Technology 6 (3) (1996), 243 – 250.

[22] M. Shaou-Gang, K. Fu-Sheng and C. Shu-Ching, A lossless compression method for medical image
sequences using jpeg-ls and interframe coding, IEEE Transactions on Information Technology in
Biomedicine 13 (2009), 818 – 821.

[23] Taubman, High-performance scalable image compression with EBCOT, IEEE Trans. Image
Processing 9 (7) (2000), 1158 – 1170.

[24] C. Tzong-Jer and C. Keh-Shih, A pseudo lossless image Compression Method, Image and Signal
Processing (CISP), 3rd International Congress, Vol. 2, pp. 610 – 615 (2010).

[25] B.E. Usevith, A tutorial on modern lossy wavelet image compression: a foundation of JPEG 2000,
IEEE Signal Processing. Mag. 22 – 35 (2001).

[26] P. Waldemar and T.A. Ramstad, Hybrid KLT-SVD image compression, IEEE International
Conference on Acoustics, Speech, and Signal Processing 4 (1997), 2713 – 2716.

[27] F.W. Wheeler and W.A. Pearlman, SPIHT image compression without list, in Proc. ICASSP Istanbul,
Turkey, pp. 2047 – 2050 (2000).

Journal of Informatics and Mathematical Sciences, Vol. 10, No. 1 & 2, pp. 109–118, 2018


	Introduction
	Proposed Compression Method
	Modified Rank One Updated SVD
	Binary Tree Coding with Adaptive Scanning Order

	Experiment Results and Discussion
	Conclusion
	References

