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1. Introduction

Zadeh’s classical paper [12] of 1965 introduced the concepts of fuzzy sets. The study of the fuzzy
algebraic structures started with the introduction of the concepts of fuzzy subgroups and fuzzy
(right, left) ideals in the pioneering paper of Rosenfeld [6]. Choudhury et al. [1] defined a fuzzy
subgroups and fuzzy homomorphism. Solairaju and Nagarajan [5, 7, 8, 9] have introduced and
defined a new algebraic structure called Q-fuzzy subgroups. Subramanian et al. [11] defined
and discussed some properties about M-fuzzy groups. On the other hand Solairaju et al. [10]
introduced the new structures of Q-fuzzy M-subgroups of near rings. Li [2] introduced the
concept of HX group and the authors Luochengzhong et al. [3] introduced the concept of fuzzy
HX group. Muthuraj et al. [4] discuss the concept of anti Q-fuzzy HX group. In this paper we
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define a new algebraic structure of a Q-fuzzy M-HX subgroup and level subset of a Q-fuzzy
M-HX subgroups and discussed some of its properties.

2. Preliminaries

Definition 2.1 ([2]). In 2G − {φ}, a non empty-set υ⊂ 2G − {φ} is called a HX group on G, if υ is
a group with respect to algebraic operation defined by AB = {ab;a ∈ A and b ∈ B}, which its unit
element is denoted by E.

Definition 2.2 ([12]). Let X is a non empty-set. A fuzzy subset λ of X is a function λ : X → [0,1].

Definition 2.3 ([3, 4]). A fuzzy set λ is called fuzzy HX subgroup of a HX group υ if for A,B ∈ υ.

(i) λ(AB)≥min{λ(A),λ(B)}.

(ii) λ(A−1)=λ(A).

Definition 2.4 ([4, 9]). Let Q and υ be any two sets. A mapping λ : υ×Q → [0,1] is called a
Q-fuzzy set in υ.

Definition 2.5 ([4, 9]). A Q-fuzzy set λ is called a Q-fuzzy HX subgroup of a HX group υ if for
A,B ∈ υ and q ∈Q.

(i) λ(AB, q)≥min{λ(A, q),λ(B, q)}.

(ii) λ(A−1, q)=λ(A, q).

Definition 2.6 ([4]). Let υ be a HX group. A Q-fuzzy HX subgroup λ of υ is said to be normal if
for all A,B ∈ υ and q ∈Q, λ(ABA−1, q)=λ(B, q) or λ(AB, q)=λ(BA, q).

Definition 2.7. A HX group with operators is an algebraic system consisting of a HX group
υ, a set M and a function defined in the product set M×υ and having values in υ such that, if
mAB denotes the element in υ determined by element AB of υ and the element m of M, then υ

is called M-HX group with operators.

A subgroup U of a M-HX group υ is said to be an M-HX subgroup if mA ∈ H for all m ∈ M and
A ∈ H.

Definition 2.8. Let G be a M-group, a fuzzy subset λ of G is said to be fuzzy M-subgroup of G
if its satisfies the following axioms.

(i) λ(mxy)≥min{λ(mx),λ(my)}.

(ii) λ(mx−1)=λ(mx), for all x, y ∈G and m ∈ M.

Definition 2.9. A Q-fuzzy set λ is called a Q-fuzzy M-subgroup of a M-group G if for x, y ∈G,
q ∈Q and m ∈ M.

(i) λ(m(xy), q)≥min{λ(mx, q),λ(my, q)}.
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(ii) λ(mx−1, q)=λ(mx, q).

Definition 2.10. A Q-fuzzy set λ is called a Q-fuzzy M-HX subgroup of a M-HX group υ if for
A,B ∈ υ, q ∈Q and m ∈ M.

(i) λ(m(AB), q)≥min{λ(mA, q),λ(mB, q)}.

(ii) λ(mA−1, q)=λ(mA, q).

Definition 2.11. Let υ be a M-HX group. A Q-fuzzy M-HX subgroup λ of υ is said to be normal
if for all A,B ∈ υ, m ∈ M and q ∈Q,λ(m(ABA−1), q)=λ(mB, q) or λ(m(AB), q)=λ(m(BA), q).

3. Q-fuzzy M-HX groups under M-homomorphism and M-anti
homomorphism

Definition 3.1. Let υ1 and υ2 be any two M-HX groups, then the function ϕ : υ1 → υ2 is said to
be an M-homomorphism if

(i) ϕ(AB)=ϕ(A) ·ϕ(B).

(ii) ϕ(mA)= m ·ϕ(A) for all A,B ∈ υ1 and m ∈ M.

Definition 3.2. Let υ1 and υ2 be any two M-HX groups (not necessarily commutative) then the
function ϕ : υ1 → υ2 is said to be an M-anti homomorphism if

(i) ϕ(AB)=ϕ(B) ·ϕ(A).

(ii) ϕ(mA)= m ·ϕ(A) for all A,B ∈ υ1 and m ∈ M.

Theorem 3.3. Let ϕ be a M-homomorphism form a M-HX group υ1 onto a M-HX group υ2. If λ
is an Q-fuzzy M-HX subgroup of υ1 and λ is ϕ-invariant, then ϕ(λ) “the image of λ under ϕ” is
a Q-fuzzy M-HX subgroup of υ2

Proof. Let α ∈ image ϕ(λ) for some B ∈ υ2,ϕ(λ)(mB, q)= sup
(mA,q)∈ϕ−1(mB,q)

λ(mA, q)=α.

Such that α ≤ λ(mE, q). Clearly λα is an M-HX subgroup of υ1, if α = 1 then (ϕ(λ))α = υ2. If
0<α< 1 then (ϕ(λ))α =ϕ(λα) since (mC, q) ∈ (ϕ(λ))α iff

sup
(mA,q)∈ϕ−1(mC,q)

λ(mQ, q)≥α ϕ(λ)(mC, q)≤ q if and only

(0 < α < 1) iff there exist A ∈ υ1 such that ϕ(λ)(mA, q) = (mC, q) and λ(mA, q) ≥ α iff
(mC, q) ∈ ϕ(λα) therefore (ϕ(λ))α = ϕ(λα). Since ϕ is an M-homomorphism, ϕ(λα) is a M-HX
subgroup of υ2 hence (ϕ(λ))αis a M-HX subgroup of υ2. Then ϕ(λ) is a Q-fuzzy M-HX subgroup
of υ2.

Corollary 3.4. Let ϕ be a M-anti homomorphism form a M-HX group υ1 onto a M-HX group υ2.
If λ is an Q-fuzzy M-HX subgroup of υ1 and λ is ϕ-invariant, then ϕ(λ) “the image of λ under ϕ”
is a Q-fuzzy M-HX subgroup of υ2.
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Proof. Straight forward.

Theorem 3.5. The M-homomorphic pre image of an Q-fuzzy M-HX subgroup of an M-HX group
υ2 is an Q-fuzzy M-HX subgroup of υ1.

Proof. Let υ1 → υ2 be a M-homomorphism and the fuzzy set U on υ2 be an Q-fuzzy M-HX
subgroup, we need to prove that any Q-fuzzy set λ on υ1 is an Q-fuzzy M-HX subgroup where
U =ϕ(λ).

λ(m(AB), q)=U(ϕ(m(AB), q)

=U(ϕ(mA, q),ϕ(mB, q))

≥min{U(ϕ(mA, q)),U(ϕ(mB, q))}

=min{λ(mA, q),λ(mB, q)}.

Thus λ(m(AB), q)≥min{λ(mA, q),λ(mB, q)}.

λ(mA−1, q)=U(ϕ(mA−1, q)

=U(ϕ−1(mA, q)

=U(ϕ(mA, q)

=λ(mA, q).

Thus λ(mA−1, q)=λ(mA, q).

Then λ is an Q-fuzzy M-HX subgroup of υ1.

Corollary 3.6. The M-anti homomorphic pre image of an Q-fuzzy M-HX subgroup of an M-HX
group υ2 is an Q-fuzzy M-HX subgroup of υ1.

Proof. Straight forward.

4. Level Subsets of a Q-fuzzy M-HX Groups

Theorem 4.1. Let λ be a Q-fuzzy subset of a M-HX group υ. If λ is an Q-fuzzy M-HX subgroup
of υ then the level subset λt, t ∈ Im(λ) are M-HX subgroup of υ.

Proof. Let t ∈ Im(λ) and A,B ∈ λt then λ(mA, q) = t and λ(mB, q) = t, since λ is an Q-fuzzy
M-HX subgroup of υ thus λ(m(AB), q) ≥ min{λ(mA, q),λ(mB, q)} ≥ t then λ(m(AB), q) ≥ t and
hence m(AB) ∈λt. Also if mA ∈λt then λ(mA−1, q)=λ(mA, q)≥ t thus mA−1 ∈λt. Therefore λt

is an M-HX subgroup of υ.

Theorem 4.2. Let λ be a Q-fuzzy subset of a M-HX group υ. If λ is an Q-fuzzy M-HX subgroup of
υ, if the level subset λt, t ∈ Im(λ) are M-HX subgroup of υ, then λ is an Q-fuzzy M-HX subgroup
of υ.
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Proof. Suppose that the level subsets λtt ∈ Im(λ) are M-HX subgroup of υ, if there exist
A0,B0 ∈ υ such that λ(m(A0B0), q) < min{λ(mA0, q),λ(mB0, q)}. If α0 = 1

2 {λ(m(A0B0), q) +
min{{λ(mA0, q), (mB0, q)}}, we have (m(A0B0), q) < α0 < min{λ(mA0, q),λ(mB0, q)}. Thus
mA0,mB0 ∈ λt0 but m(A0B0) ∉ λt0 which is contradiction. If A,B ∈ υ,m ∈ M and q ∈ Q,
λ(m(AB), q)≤min{λ(mA, q),λ(mB, q)}, let α0 = 1

2 {λ(m(AB), q)+min{{λ(mA, q),λ(mB, q)}}} then
λ(m(AB), q) < α0 < min{λ(mA, q)λ, (mB, q)} that is for m ∈ M and AB ∈ λt0 but m(AB) ∉ λt0
which is contradiction to λt0 is a M-HX subgroup of υ.

Definition 4.3. Let λ be an Q-fuzzy M-HX subgroup of an M-HX group υ. Then the M-HX
subgroups λt for t ∈ [0,1] and λ(mE, q)≥ t are called level M-HX subgroup of λ.

Theorem 4.4. The M-homomorphic image of a level M-HX subgroup of an Q-fuzzy M-HX
subgroup λ of an M-HX group υ1 is a level M-HX subgroup of an Q-fuzzy M-HX subgroup ϕ(λ)
of an M-HX group υ2 where λ is ϕ-invariant.

Proof. Let υ1, υ2 be any two M-HX groups and ϕ : υ1 → υ2 be an M-homomorphism, let λ be an
Q-fuzzy M-HX subgroup of υ1 since ϕ(λ) is an Q-fuzzy M-HX subgroup of υ2, let λα be a level
M-HX subgroup of an Q-fuzzy M-HX subgroup λ of υ1 since ϕ is an M-homomorphism, ϕ(λα) is
an M-HX subgroup ϕ(λ) of υ2 and ϕ(λα)= (ϕ(λ))α. Hence (ϕ(λ))α is a level M-HX subgroup ϕ(λ)
of υ2.

Corollary 4.5. The M-anti homomorphic image of a level M-HX subgroup of an Q-fuzzy M-HX
subgroup λ of an M-HX group υ1 is a level M-HX subgroup of an Q-fuzzy M-HX subgroup ϕ(λ)
of an M-HX group υ2 where λ is ϕ-invariant.

Proof. Straight forward.

Theorem 4.6. The M-homomorphic pre image of a level M-HX subgroup of an Q-fuzzy M-HX
subgroup U of an M-HX group υ2 is a level M-HX subgroup of an Q-fuzzy M-HX subgroup
ϕ−1(U) of an M-HX group υ1.

Proof. Let ϕ : υ1 → υ2 be an M-homomorphism and U be an Q-fuzzy M-HX subgroup of υ2. Since
ϕ−1(U) is a Q-fuzzy M-HX subgroup of υ1 let Ut be a level M-HX subgroup of an Q-fuzzy M-HX
subgroup U of υ2ϕ, is an M-homomorphism, ϕ−1(Ut) is an M-HX subgroup of ϕ−1(U) of υ1 and
ϕ−1(Ut) = (ϕ−1(U))t is an M-HX subgroup of a Q-fuzzy M-HX subgroup ϕ−1(U) of υ1 that is,
(ϕ−1(U))t is a level M-HX subgroup of a Q-fuzzy M-HX subgroup ϕ−1(U) of υ1.

Corollary 4.7. The M-anti homomorphic pre image of a level M-HX subgroup of an Q-fuzzy
M-HX subgroup U of an M-HX group υ2 is a level M-HX subgroup of an Q-fuzzy M-HX subgroup
ϕ−1(U) of an M-HX group υ1.

Proof. Straight forward.
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5. Conclusion

In this paper, we have given the notion of a Q-fuzzy M-HX subgroup and the M-homomorphism
and M-anti homomorphism of a Q-fuzzy M-HX subgroups. The image, the pre image of a Q-fuzzy
M-HX subgroup and the level subset of a Q-fuzzy M-HX subgroups are discussed with respect
to the M-homomorphism and M-anti homomorphism. We hope that our results can also be
extended to other algebraic field.
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