Journal of Informatics and Mathematical Sciences

Vol. 9, No. 1, pp. 73–78, 2017 ISSN 0975-5748 (online); 0974-875X (print) Published by RGN Publications

Some Properties for M-Homomorphism and M-Anti Homomorphism over Q-Fuzzy M-HX Subgroups and its Level Research Article

Mourad Oqla Massa'deh

Department of Applied Science, Ajloun College, Al-Balqa Applied University, Jordan mourad.oqla@bau.edu.jo

Abstract. In this paper, we define a new algebraic structure of a Q-fuzzy M-HX subgroup and the M-homomorphism and M-anti homomorphism of a Q-fuzzy M-HX subgroups. We discussed some properties in this subject such that the image and pre image of a Q-fuzzy M-HX subgroup also characterizations of level subset of a Q-fuzzy M-HX subgroups of a M-HX group are given.

Keywords. Fuzzy set; Fuzzy group; Q-fuzzy set; Q-fuzzy group; Q-fuzzy M-group; HX group; Q-fuzzy M-HX group; Level subset HX group; M-Homomorphism; M-anti homomorphism

MSC. 03F05; 03E72; 22F05; 20N25

Received: May 5, 2016

Accepted: March 16, 2017

Copyright © 2017 Mourad Oqla Massa'deh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Zadeh's classical paper [12] of 1965 introduced the concepts of fuzzy sets. The study of the fuzzy algebraic structures started with the introduction of the concepts of fuzzy subgroups and fuzzy (right, left) ideals in the pioneering paper of Rosenfeld [6]. Choudhury *et al.* [1] defined a fuzzy subgroups and fuzzy homomorphism. Solairaju and Nagarajan [5, 7, 8, 9] have introduced and defined a new algebraic structure called Q-fuzzy subgroups. Subramanian *et al.* [11] defined and discussed some properties about M-fuzzy groups. On the other hand Solairaju *et al.* [10] introduced the new structures of Q-fuzzy M-subgroups of near rings. Li [2] introduced the concept of HX group and the authors Luochengzhong *et al.* [3] introduced the concept of fuzzy HX group. In this paper we

define a new algebraic structure of a Q-fuzzy M-HX subgroup and level subset of a Q-fuzzy M-HX subgroups and discussed some of its properties.

2. Preliminaries

Definition 2.1 ([2]). In $2^G - \{\phi\}$, a non empty-set $v \subset 2^G - \{\phi\}$ is called a HX group on *G*, if *v* is a group with respect to algebraic operation defined by $AB = \{ab; a \in A \text{ and } b \in B\}$, which its unit element is denoted by *E*.

Definition 2.2 ([12]). Let *X* is a non empty-set. A fuzzy subset λ of *X* is a function $\lambda : X \to [0, 1]$.

Definition 2.3 ([3, 4]). A fuzzy set λ is called fuzzy HX subgroup of a HX group v if for $A, B \in v$.

- (i) $\lambda(AB) \ge \min\{\lambda(A), \lambda(B)\}.$
- (ii) $\lambda(A^{-1}) = \lambda(A)$.

Definition 2.4 ([4, 9]). Let Q and v be any two sets. A mapping $\lambda : v \times Q \rightarrow [0, 1]$ is called a Q-fuzzy set in v.

Definition 2.5 ([4, 9]). A Q-fuzzy set λ is called a Q-fuzzy HX subgroup of a HX group v if for $A, B \in v$ and $q \in Q$.

- (i) $\lambda(AB,q) \ge \min\{\lambda(A,q), \lambda(B,q)\}.$
- (ii) $\lambda(A^{-1},q) = \lambda(A,q)$.

Definition 2.6 ([4]). Let v be a HX group. A Q-fuzzy HX subgroup λ of v is said to be normal if for all $A, B \in v$ and $q \in Q$, $\lambda(ABA^{-1}, q) = \lambda(B, q)$ or $\lambda(AB, q) = \lambda(BA, q)$.

Definition 2.7. A HX group with operators is an algebraic system consisting of a HX group v, a set M and a function defined in the product set $M \times v$ and having values in v such that, if mAB denotes the element in v determined by element AB of v and the element m of M, then v is called M-HX group with operators.

A subgroup *U* of a M-HX group *v* is said to be an M-HX subgroup if $mA \in H$ for all $m \in M$ and $A \in H$.

Definition 2.8. Let *G* be a M-group, a fuzzy subset λ of *G* is said to be fuzzy M-subgroup of *G* if its satisfies the following axioms.

- (i) $\lambda(mxy) \ge \min\{\lambda(mx), \lambda(my)\}.$
- (ii) $\lambda(mx^{-1}) = \lambda(mx)$, for all $x, y \in G$ and $m \in M$.

Definition 2.9. A Q-fuzzy set λ is called a Q-fuzzy M-subgroup of a M-group *G* if for $x, y \in G$, $q \in Q$ and $m \in M$.

(i) $\lambda(m(xy),q) \ge \min\{\lambda(mx,q),\lambda(my,q)\}.$

(ii) $\lambda(mx^{-1},q) = \lambda(mx,q)$.

Definition 2.10. A Q-fuzzy set λ is called a Q-fuzzy M-HX subgroup of a M-HX group v if for $A, B \in v, q \in Q$ and $m \in M$.

- (i) $\lambda(m(AB),q) \ge \min\{\lambda(mA,q), \lambda(mB,q)\}.$
- (ii) $\lambda(mA^{-1},q) = \lambda(mA,q)$.

Definition 2.11. Let v be a M-HX group. A Q-fuzzy M-HX subgroup λ of v is said to be normal if for all $A, B \in v$, $m \in M$ and $q \in Q, \lambda(m(ABA^{-1}), q) = \lambda(mB, q)$ or $\lambda(m(AB), q) = \lambda(m(BA), q)$.

3. Q-fuzzy M-HX groups under M-homomorphism and M-anti homomorphism

Definition 3.1. Let v_1 and v_2 be any two M-HX groups, then the function $\varphi : v_1 \rightarrow v_2$ is said to be an M-homomorphism if

- (i) $\varphi(AB) = \varphi(A) \cdot \varphi(B)$.
- (ii) $\varphi(mA) = m \cdot \varphi(A)$ for all $A, B \in v_1$ and $m \in M$.

Definition 3.2. Let v_1 and v_2 be any two M-HX groups (not necessarily commutative) then the function $\varphi : v_1 \rightarrow v_2$ is said to be an M-anti homomorphism if

- (i) $\varphi(AB) = \varphi(B) \cdot \varphi(A)$.
- (ii) $\varphi(mA) = m \cdot \varphi(A)$ for all $A, B \in v_1$ and $m \in M$.

Theorem 3.3. Let φ be a *M*-homomorphism form a *M*-HX group v_1 onto a *M*-HX group v_2 . If λ is an *Q*-fuzzy *M*-HX subgroup of v_1 and λ is φ -invariant, then $\varphi(\lambda)$ "the image of λ under φ " is a *Q*-fuzzy *M*-HX subgroup of v_2

Proof. Let $\alpha \in \text{image } \varphi(\lambda)$ for some $B \in v_2, \varphi(\lambda)(mB,q) = \sup_{(mA,q) \in \varphi^{-1}(mB,q)} \lambda(mA,q) = \alpha$.

Such that $\alpha \leq \lambda(mE,q)$. Clearly λ_{α} is an M-HX subgroup of v_1 , if $\alpha = 1$ then $(\varphi(\lambda))_{\alpha} = v_2$. If $0 < \alpha < 1$ then $(\varphi(\lambda))_{\alpha} = \varphi(\lambda_{\alpha})$ since $(mC,q) \in (\varphi(\lambda))_{\alpha}$ iff

 $\sup_{(mA,q)\in\varphi^{-1}(mC,q)}\lambda(mQ,q)\geq\alpha\quad\varphi(\lambda)(mC,q)\leq q\quad\text{if and only}$

 $(0 < \alpha < 1)$ iff there exist $A \in v_1$ such that $\varphi(\lambda)(mA,q) = (mC,q)$ and $\lambda(mA,q) \ge \alpha$ iff $(mC,q) \in \varphi(\lambda_{\alpha})$ therefore $(\varphi(\lambda))_{\alpha} = \varphi(\lambda_{\alpha})$. Since φ is an M-homomorphism, $\varphi(\lambda_{\alpha})$ is a M-HX subgroup of v_2 hence $(\varphi(\lambda))_{\alpha}$ is a M-HX subgroup of v_2 . Then $\varphi(\lambda)$ is a Q-fuzzy M-HX subgroup of v_2 .

Corollary 3.4. Let φ be a M-anti homomorphism form a M-HX group v_1 onto a M-HX group v_2 . If λ is an Q-fuzzy M-HX subgroup of v_1 and λ is φ -invariant, then $\varphi(\lambda)$ "the image of λ under φ " is a Q-fuzzy M-HX subgroup of v_2 . Proof. Straight forward.

Theorem 3.5. The M-homomorphic pre image of an Q-fuzzy M-HX subgroup of an M-HX group v_2 is an Q-fuzzy M-HX subgroup of v_1 .

Proof. Let $v_1 \rightarrow v_2$ be a M-homomorphism and the fuzzy set U on v_2 be an Q-fuzzy M-HX subgroup, we need to prove that any Q-fuzzy set λ on v_1 is an Q-fuzzy M-HX subgroup where $U = \varphi(\lambda)$.

$$\begin{split} \lambda(m(AB),q) &= U(\varphi(m(AB),q) \\ &= U(\varphi(mA,q),\varphi(mB,q)) \\ &\geq \min\{U(\varphi(mA,q)),U(\varphi(mB,q))\} \\ &= \min\{\lambda(mA,q),\lambda(mB,q)\}. \end{split}$$

Thus $\lambda(m(AB),q) \ge \min\{\lambda(mA,q),\lambda(mB,q)\}.$

$$\begin{split} \lambda(mA^{-1},q) &= U(\varphi(mA^{-1},q)) \\ &= U(\varphi^{-1}(mA,q)) \\ &= U(\varphi(mA,q)) \\ &= \lambda(mA,q). \end{split}$$

Thus $\lambda(mA^{-1},q) = \lambda(mA,q)$.

Then λ is an Q-fuzzy M-HX subgroup of v_1 .

Corollary 3.6. The M-anti homomorphic pre image of an Q-fuzzy M-HX subgroup of an M-HX group v_2 is an Q-fuzzy M-HX subgroup of v_1 .

Proof. Straight forward.

4. Level Subsets of a Q-fuzzy M-HX Groups

Theorem 4.1. Let λ be a Q-fuzzy subset of a M-HX group v. If λ is an Q-fuzzy M-HX subgroup of v then the level subset λ_t , $t \in \text{Im}(\lambda)$ are M-HX subgroup of v.

Proof. Let $t \in \text{Im}(\lambda)$ and $A, B \in \lambda_t$ then $\lambda(mA, q) = t$ and $\lambda(mB, q) = t$, since λ is an Q-fuzzy M-HX subgroup of v thus $\lambda(m(AB), q) \ge \min\{\lambda(mA, q), \lambda(mB, q)\} \ge t$ then $\lambda(m(AB), q) \ge t$ and hence $m(AB) \in \lambda_t$. Also if $mA \in \lambda_t$ then $\lambda(mA^{-1}, q) = \lambda(mA, q) \ge t$ thus $mA^{-1} \in \lambda_t$. Therefore λ_t is an M-HX subgroup of v.

Theorem 4.2. Let λ be a Q-fuzzy subset of a M-HX group v. If λ is an Q-fuzzy M-HX subgroup of v, if the level subset λ_t , $t \in \text{Im}(\lambda)$ are M-HX subgroup of v, then λ is an Q-fuzzy M-HX subgroup of v.

Journal of Informatics and Mathematical Sciences, Vol. 9, No. 1, pp. 73-78, 2017

Proof. Suppose that the level subsets $\lambda_t t \in \operatorname{Im}(\lambda)$ are M-HX subgroup of v, if there exist $A_0, B_0 \in v$ such that $\lambda(m(A_0B_0), q) < \min\{\lambda(mA_0, q), \lambda(mB_0, q)\}$. If $\alpha_0 = \frac{1}{2}\{\lambda(m(A_0B_0), q) + \min\{\lambda(mA_0, q), (mB_0, q)\}\}$, we have $(m(A_0B_0), q) < \alpha_0 < \min\{\lambda(mA_0, q), \lambda(mB_0, q)\}$. Thus $mA_0, mB_0 \in \lambda_t 0$ but $m(A_0B_0) \notin \lambda_t 0$ which is contradiction. If $A, B \in v, m \in M$ and $q \in Q$, $\lambda(m(AB), q) \le \min\{\lambda(mA, q), \lambda(mB, q)\}$, let $\alpha_0 = \frac{1}{2}\{\lambda(m(AB), q) + \min\{\lambda(mA, q), \lambda(mB, q)\}\}$ then $\lambda(m(AB), q) < \alpha_0 < \min\{\lambda(mA, q)\lambda, (mB, q)\}$ that is for $m \in M$ and $AB \in \lambda_t 0$ but $m(AB) \notin \lambda_t 0$ which is contradiction to $\lambda_t 0$ is a M-HX subgroup of v.

Definition 4.3. Let λ be an Q-fuzzy M-HX subgroup of an M-HX group v. Then the M-HX subgroups λ_t for $t \in [0, 1]$ and $\lambda(mE, q) \ge t$ are called level M-HX subgroup of λ .

Theorem 4.4. The M-homomorphic image of a level M-HX subgroup of an Q-fuzzy M-HX subgroup λ of an M-HX group v_1 is a level M-HX subgroup of an Q-fuzzy M-HX subgroup $\varphi(\lambda)$ of an M-HX group v_2 where λ is φ -invariant.

Proof. Let v_1, v_2 be any two M-HX groups and $\varphi : v_1 \to v_2$ be an M-homomorphism, let λ be an Q-fuzzy M-HX subgroup of v_1 since $\varphi(\lambda)$ is an Q-fuzzy M-HX subgroup of v_2 , let λ_{α} be a level M-HX subgroup of an Q-fuzzy M-HX subgroup λ of v_1 since φ is an M-homomorphism, $\varphi(\lambda_{\alpha})$ is an M-HX subgroup $\varphi(\lambda)$ of v_2 and $\varphi(\lambda_{\alpha}) = (\varphi(\lambda))_{\alpha}$. Hence $(\varphi(\lambda))_{\alpha}$ is a level M-HX subgroup $\varphi(\lambda)$ of v_2 .

Corollary 4.5. The M-anti homomorphic image of a level M-HX subgroup of an Q-fuzzy M-HX subgroup λ of an M-HX group v_1 is a level M-HX subgroup of an Q-fuzzy M-HX subgroup $\varphi(\lambda)$ of an M-HX group v_2 where λ is φ -invariant.

Proof. Straight forward.

Theorem 4.6. The M-homomorphic pre image of a level M-HX subgroup of an Q-fuzzy M-HX subgroup U of an M-HX group v_2 is a level M-HX subgroup of an Q-fuzzy M-HX subgroup $\varphi^{-1}(U)$ of an M-HX group v_1 .

Proof. Let $\varphi: v_1 \to v_2$ be an M-homomorphism and U be an Q-fuzzy M-HX subgroup of v_2 . Since $\varphi^{-1}(U)$ is a Q-fuzzy M-HX subgroup of v_1 let U_t be a level M-HX subgroup of an Q-fuzzy M-HX subgroup U of $v_2\varphi$, is an M-homomorphism, $\varphi^{-1}(U_t)$ is an M-HX subgroup of $\varphi^{-1}(U)$ of v_1 and $\varphi^{-1}(U_t) = (\varphi^{-1}(U))_t$ is an M-HX subgroup of a Q-fuzzy M-HX subgroup $\varphi^{-1}(U)$ of v_1 that is, $(\varphi^{-1}(U))_t$ is a level M-HX subgroup of a Q-fuzzy M-HX subgroup $\varphi^{-1}(U)$ of v_1 .

Corollary 4.7. The M-anti homomorphic pre image of a level M-HX subgroup of an Q-fuzzy M-HX subgroup U of an M-HX group v_2 is a level M-HX subgroup of an Q-fuzzy M-HX subgroup $\varphi^{-1}(U)$ of an M-HX group v_1 .

Proof. Straight forward.

5. Conclusion

In this paper, we have given the notion of a Q-fuzzy M-HX subgroup and the M-homomorphism and M-anti homomorphism of a Q-fuzzy M-HX subgroups. The image, the pre image of a Q-fuzzy M-HX subgroup and the level subset of a Q-fuzzy M-HX subgroups are discussed with respect to the M-homomorphism and M-anti homomorphism. We hope that our results can also be extended to other algebraic field.

Competing Interests

Author declares that he has no competing interests.

Authors' Contributions

Author wrote, read and approved the final manuscript.

References

- [1] F.P. Choudhury, A.B. Chakraborty and S.S. Khare, A note on fuzzy subgroups and fuzzy homomorphism, *Journal of Mathematical Analysis and Applications* **131** (1988), 537–553.
- [2] L. Hongxing, HX group, Busefal 33 (1987), 31–37.
- [3] L. Chengzhong, M. Honghai and L. Hongxing, Fuzzy HX group, Busefal 41 (14) (1989), 97-106.
- [4] R. Muthuraj, K.H. Manikandan and P.M. Sithar Selvam, On anti Q-fuzzy normal HX groups, *Elixir* Discrete Mathematics 44 (2012), 7477–7479.
- [5] R. Nagarajan and A. Solairaju, Some structure properties of upper Q-fuzzy index order with upper Q-fuzzy subgroups, *International Journal of Open Problems in Mathematics and Applications* 1 (2011), 21–29.
- [6] A. Rosenfeld, Fuzzy groups, Journal of Mathematical Analysis and Applications 35 (1971), 512–517.
- [7] A. Solairaju and R. Nagarajan, A new structure and construction of Q-fuzzy groups, Advances in Fuzzy Mathematics 4 (2009), 23–29.
- [8] A. Solairaju and R. Nagarajan, Lattice valued Q-fuzzy left R-sub modules of near rings with respect to t-norms, *Advance in Fuzzy Mathematics* 4 (2009), 137–145.
- [9] A. Solairaju and R. Nagarajan, Q-fuzzy left R-subgroups of near rings with respect to t-norms, *Antarctica Journal of Mathematics* 5 (2008), 59–63.
- [10] A. Solairaju, P. Sarangapani, R. Nagarajan and P. Murugananthan, Anti Q-fuzzy M-subgroups of a near rings, *International Journal of Mathematics Trends and Technology* 4 (2013), 130–135.
- [11] S. Subramanian, R. Nagarajan and B. Chellappa, Structure properties of M-fuzzy groups, Applied Mathematical Sciences 6 (2012), 545–552.
- [12] LA. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353.