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Abstract. Let X denote a set of non-negative integers and P(X ) be its power set. An integer additive
set-labeling (IASL) of a graph G is an injective set-valued function f : V (G)→P(X )−{;} where induced
function f + : E(G) → P(X )− {;} is defined by f +(uv) = f (u)+ f (v), where f (u)+ f (v) is the sumset
of f (u) and f (v). Let f (x) = mx+ c; m ∈ N, c ∈ N0. A finite linear Jaco graph, denoted by Jn( f (x)),
is a directed graph with vertex set {vi : i ∈ N} such that (vi,v j) is an arc of Jn( f (x)) if and only if
f (i)+ i−d−(v j)≥ j. In this paper, we discuss the admissibility of different types of integer additive
set-labeling by finite linear Jaco graphs.
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1. Introduction

For all terms and definitions, not defined specifically in this paper, we refer to [2, 3, 5, 25].
Unless mentioned otherwise, all graphs considered here are simple, finite, non-trivial and
connected.

Motivated by several problems in social interactions, the notion of the set-valuation or
set-labeling of graphs was introduced in [1] as an injective set assignment of G in which the
vertices of G are labeled by the subsets of a ground set X according certain rules. A graph with
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a set-valuation is called a set-valued graph or a set-labeled graph. Several studies on different
types of set-valued graphs have been taken place since then.

1.1 Basics of Integer Additive Set-Labeled Graphs
The sumset of two sets A and B of integers, denoted by A+B, is defined as A+B = {a+b : a ∈
A,b ∈ B}. If A or B is countably infinite, then their sumset A+B will also be countably infinite.
Hence, all sets we consider here are finite sets of non-negative integers.

Definition 1.1 ([4, 10]). Let X be a non-empty finite set of non-negative integers and let P(X )
be its power set. An integer additive set-valuation or an integer additive set-labeling (IASL)
of a graph G is an injective function f : V (G) → P(X )− {;} such that the induced function
f + : E(G) →P(X )− {;} is defined by f +uv = f (u)+ f (v) ∀ uv ∈ E(G). A graph G which admits
an IASL is called an integer additive set-labeled graph (IASL-graph).

Definition 1.2 ([4, 10]). An integer additive set-labeling of a graph G is said to be an integer
additive set-indexer (IASI) if the induced function f + is also a injective. A graph G which admits
an IASI is called an integer additive set-indexed graph (IASI-graph).

The cardinality of the set-label of an element (vertex or edge) of a graph G is called the
set-labeling number of that element. An element of a given graph G is said to be a mono-indexed
element of G if its set-labelling number is 1.

1.2 Jaco Graphs – A Revisit
Definition 1.3 ([6]). An infinite linear Jaco graph, denoted by J∞( f (x)), is a directed graph
with vertex set {vi : i ∈N} such that (vi,v j) is an arc of J∞( f (x)) if and only if f (i)+ i−d−(v j)≥ j.

A Jaco graph Jn( f (x)) has the following four fundamental properties (see [6]).

(i) V (J∞( f (x)))= {vi : i ∈N},

(ii) if v j is the head of an edge (arc), then the tail is always a vertex vi , i < j,

(iii) if vk , for smallest k ∈N is a tail vertex then, all vertices, v`, k<`< j are tails of arcs to v j ,

(iv) the degree of the k-th vertex vk is mk+ c for 1≤ k ≤ n.

Hence, trivially we have d(vi)≤ i for i ∈N.

Definition 1.4 ([6]). A finite linear Jaco graph, denoted by Jn(mx+ c) : x,m ∈N, c ∈N0, is a
directed graph whose vertex set is V = V (Jn(mx+ c)) = {vi : i ∈ N, i ≤ n} and the edge set is
A(Jn(mx+ c))⊆V ×V such that (vi,v j) ∈ A(Jn(mx+ c)) if and only if ( f (i)+ i)−d−(vi)≥ j.

Some illustrations to certain finite linear Jaco graphs are given in Figure 1(a,b).
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(a) A linear Jaco graph J8(3x) (b) A linear Jaco graph J10(2x+1)

Figure 1

If the context is clear, the underlying graph of Jn(mx+ c) may also be referred to as a finite
Jaco graph of order n with the same notation.

Different types of integer additive set-labelings of graphs have been introduced and studied
the properties and structural characteristics of various classes which admit these integer
additive set-labelings of graphs in [4, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].
Motivated by these studies, in this paper, we discuss the admissibility of these types IASLs by
the family of finite Jaco graphs.

2. IASLs of Jaco Graphs

Integer additive set-labelings of graphs are classified in to certain types based on the cardinality
or the properties of the set-labels of the set-labels of elements of the graphs under consideration.
In the first section, we consider the case when the collection of set-labels have some structural
properties.

Definition 2.1 ([17]). Let X be a non-empty set of non-negative integers. An IASI f : V (G)→
P(X )− {;} of a graph G is said to be a topological integer additive set-labeling of G if the
collection of all vertex set-labels of G together with the null set is a topology on the ground set
X ; that is, if f (V (G))∪ {;} is a topology on X .

Theorem 2.1 ([17]). A necessary and sufficient condition for a graph G to the admit a topological
IASL is that G has at least one pendant vertex.

Invoking the above theorem, a necessary and sufficient condition for the admissibility of
topological IASL by finite Jaco graphs can be established as follows.
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Theorem 2.2. A finite Jaco graph Jn(mx+ c) admits a topological IASL if and only if m = 1
and c = 0.

Proof. By Theorem 2.1, a graph G admits a topological IASL if and only if it has at least one
end vertex. For a finite Jaco graph Jn(mx+ c), we note that if a pendant vertex exists, that
vertex is the very first vertex v1 of Jn(mx+ c). Moreover, we can also note that the first few
initial vertices, say vk , have degree mk+ c (see the fourth fundamental property of Jaco graphs).
Therefore, v1 is a pendant vertex if and only if m = 1 and c = 0. Hence, Jn(mx+ c) admits a
topological IASL if and only if m = 1 and c = 0.

Another type of IASL of a graph G is the graceful integer additive set-labeling, which is
defined as follows.

Definition 2.2 ([22]). An integer additive set-indexer f : V (G) → P(X )− {;} is said to be an
integer additive set-graceful labeling (IASGL) or a graceful integer additive set-labeling of G if
f +(E(G))=P(X )− {;, {0}}. A graph G which admits an integer additive set-graceful labeling is
called an integer additive set-graceful graph (in short, IASG-graph).

If f : V (G)→P(X )− {;} is an integer additive set-graceful labeling on a given graph G, then
{0} must be a set-label of one vertex of G. That is, G has even number of edges. A star graph
K1,m admits an integer additive set-graceful labeling if and only if m = 2n −2 for any integer
n > 1. For a positive integer m > 3, the path Pm does not admit an integer additive set-graceful
labeling. Let G be an IASG-graph which admits an IASGL f with respect to a finite non-empty
set X . Then, G must have at least |X |−1 pendant vertices.

The following theorem discusses a necessary and sufficient condition for a Jaco graph to
admit a graceful IASL.

Theorem 2.3. A finite Jaco graph Jn(mx+ c) admits a graceful IASL if and only if Jn(mx+ c)
is isomorphic to a path of order 3.

Proof. Assume that a finite Jaco graph Jn(mx+ c) admits a graceful IASL f . It is proved in [22]
that a graceful IASL-graph G must have at least |X |−1 pendant vertices, where X is the ground
set for labeling. Then, as stated in the previous theorem, if the Jaco graph Jn(mx+ c) has a
pendant vertex, then m = 1 and c = 0. By the definition of a finite Jaco graphs, we note that the
Jaco graph Jn(mx+ c) (in this case, Jn(x)) can have at most 3 vertices. It is also proved in [22]
that the number of edges in any graceful IASL-graph is P(X )|−2= 2|X |−2= 2(2|X |−1 −1). That
is, Jn(x) must have even number of edges. It is possible only when n = 3. But, if n = 3, m = 1
and c = 0, then it is clear that Jn(mx+ c) is isomorphic to P3.

Conversely, assume that Jn(mx+ c) ∼= P3 = v1v2v3, where d(v1) = d(v3) = 1 and d(v2) = 2.
Now, choose the set X = {0,1}. Label v2 by the set {0}, v1 by {1} and v3 by X . Therefore,
f +(v1v2)= {1} and f +(v2v3)= X . Clearly, f +(E)=P(X )−{;} and hence this labeling is a graceful
IASL for Jn(mx+ c).
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Another type of integer additive set-labeling of graphs that attracted much interest is
arithmetic integer additive set-labeling (AIASL) with respect to which the set-labels of all its
elements are arithmetic progressions (see [21]).

If the context is clear, the common difference of the set-label of an element of an AIASL-graph
may be called the common difference of that element. The deterministic ratio of an edge of an
AIASL-graph is the ratio k > 1 of the common differences of its end vertices.

The following theorem described a necessary and sufficient condition for a graph to admit
an AIASL.

Theorem 2.4. [21] A graph G admits an arithmetic IASI f if and only if the deterministic ratio
of every edge of G is a positive integer, which is less than or equal to the set-labeling number of
its end vertex having smaller common difference.

If the deterministic ratio of every edge of an AIASL-graph G is 1, then the common difference
of all elements of G will be the same and such an AIASL is called isoarithmetic IASL (IIASL) of
G (see [16]). Hence, we have the following straight forward proposition.

Proposition 2.5. Every finite Jaco graph Jn(mx+ c) admits an isoarithmetic integer additive
set-labeling.

The proof of the above result does depend only on the choice of the ground set X , which
enables us to find n distinct subsets of X , which are arithmetic progressions with the same
common difference, say d.

If the deterministic ratio of every edge of an AIASL-graph G is greater than 1, then such
an arithmetic IASL is called a biarithmetic IASL (BISAL) of G (see [16]). As stated earlier, we
have the following result also.

Proposition 2.6. Every finite Jaco graph Jn(mx+ c) admits a biarithmetic integer additive
set-labeling.

In view of the above two propositions, we can also establish the following theorem on
arithmetic IASL-graphs.

Theorem 2.7. Every finite Jaco graph Jn(mx+ c) admits an arithmetic integer additive set-
labeling.

If the deterministic ratio of all edges of an AIASL-graphs G is a constant k > 1, then such an
AIASL is called an identical arithmetic IASL (IAIASL) of G (see [16]). The following theorem
described a necessary and sufficient condition for a graph to an IAIASL.

Theorem 2.8. A graph G admits an IAIASL if and only if it is bipartite.

Invoking this theorem, we propose the following theorem as a necessary and sufficient
condition for the admissibility of an IAIASL by a Jacograph.
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Theorem 2.9. A finite Jaco gtaph Jn(mx+ c) admits an IAIASL if and only if Jn(mx+ c) ∼=
Pn; n ≤ 4.

Proof. If Jn(mx+c)∼= Pn; n ≤ 4, then it is a bipartite graph and hence by Theorem 2.8, Jn(mx+c)
admits an IAIASL.

If possible, assume that Jn(mx+c) is not isomorphic to Pn, for any n ≤ 4. Then, we have n ≥ 4
and hence any Jaco graph Jn(mx+ c) contains at least one triangle in Jn(mx+ c) irrespective of
the values of m and c. Hence, by Theorem 2.8, Jn(mx+ c) does not admit an IAIASL.

An important parameter defined on AIASL-graph is their dispensing number, which was
defined in [24] as the minimum number of edges to be removed for the given graph G so that it
admits an IAIASL. The dispensing number of a graph is denoted by ϑ(G). The following theorem
determines the dispensing number of finite linear Jaco graphs.

Theorem 2.10. The dispensing number of a linear Jaco graph Jn(mx+ c) is given by

ϑ(Jn(mx+ c))=
n−3, if m = 1 and c = 0,

n−1 otherwise.

Proof. Note that the dispensing number of a graph is the minimum number of edges in G,
the removal of which makes the graph bipartite. Let V = {vi : i = 1,2,3, . . . ,vn} be the vertex
set of a finite linear Jaco graph Jn(mx+ c) and let P denotes the maximal path v1v2v3 . . .vn in
Jn(mx+ c), which has the length n−1. Note that P is also a spanning tree of Jn(mx+ c).

If m = 1 and c = 0, every edge of the path P ′ = P−{v1v2,v2v3} are contained in some triangles
in Jn(x). Also, it can be noted that all every odd cycle in G contains some of the edges in the path
P ′. Hence, Jn(x)−P ′ is free from odd and hence is bipartite. Therefore, by Theorem 2.8, Jn(x)−P ′

admits an IAIASL and then the dispensing number of Jn(x) is ϑ(Jn(x))= |E(P ′)| = n−3.
For all other positive integral values of m and c, we can see that every edge of the path P is

contained in some triangles in Jn(mx+ c). Also, note that every odd cycle of Jn(mx+ c) contains
at least one edge of P and hence the subgraph Jn(mx+ c)−P contains no odd cycles. Therefore,
Jn(mx+ c)−P is a bipartite graph. Then, by Theorem 2.8, Jn(mx+ c)−P admits an IAIASL.
Hence, ϑ(Jn(x))= |E(P)| = n−1.

The two cases mentioned in the above proof can be verified from the graphs provided in
Figure 1.

A weak integer additive set-labeling (WIASL)of a graph G is an IASL f : V (G)→P(X )− {;},
where induced function f + : E(G)→P(X )−{;} is defined by f +(uv)= f (u)+ f (v) such that either
| f +(uv)| = | f (u)| or | f +(uv)| = | f (v)|, where f (u)+ f (v) is the sumset of f (u) and f (v).

A necessary and sufficient condition for a graph to admit a WIASL was proved in [12] as
follows.
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Theorem 2.11 ([12]). An IASL f of a graph G is a weak IASL of G if and only if at least one
end vertex of every edge of G has a singleton set-label.

In view of Theorem 2.11, we have the following result.

Theorem 2.12. Every finite Jaco graph admits a weak integer additive set-labeling.

Proof. Let I be a maximal independence set in Jn(mx+ c) such that maximum number of edges
in Jn(mx+ c) have one end vertex in I . Choose a ground set X with sufficient cardinality so that
we can label the vertices in I by distinct non-singleton subsets of X in injective manner and
all other vertices in Jn(mx+ c) can be labeled by distinct singleton sets in an injective manner.
Clearly, this labeling will be a weak IASL of Jn(mx+ c).

3. Scope for Further Studies
In this paper, we discussed the admissibility of various types of integer additive set-labelings by
a particular type of graph classes called Jaco graphs. There are more open problems in this area
which seem to be promising and interesting for further investigation. We mention some of these
open problems, we have identified during our present study.

Problem 3.1. An IASI f : V (G) → P(X )− {;} of a graph G is said to be a topogenic integer
additive set-labeling of G if the collection of the set-labels of all elements of G together with the
null set is a topology on the ground set X (see [20]). Determining suitable topogenic IASLs for
different Jaco graphs is a challenging problem for further studies.

Problem 3.2. An IASI f : V (G) → P(X )− {;} of a graph G is said to be a sequential integer
additive set-labeling of G if f (V )∪ f +(E)∪ {;} = X , the ground set (see [18]). Determining a
suitable sequential IASLs for different Jaco graphs is a challenging problem for further studies.

Problem 3.3. An integer additive set-labeling f : V (G)→P(X ) is said to be an integer additive
set-filter labeling (IASFL, in short) of G if F = f (V ) is a proper filter on X (see [23]). A graph G
which admits an IASFL is called an integer additive set-filter graph (IASF-graph). Determining
a suitable integer additive set-filter labelings for different Jaco graphs is a promising problem
for further studies.

Problem 3.4. The number of edges in a WIASL- graph, whose both end vertices have singleton
set-labels is called the sparing number of that graph G. Since all finite Jaco graphs admit a
weak integer additive set-labeling and almost all Jaco graphs are not bipartite, some edges
will have their both end vertices with singleton set-labels. Determining the sparing number of
various Jaco graphs is a worthy problem for further discussions.

Problem 3.5. The set-indexing number of a graph G is the minimum cardinality required for a
ground set X with respect to which G admit an integer additive set-labeling. Determining the
set-indexing numbers of Jaco graphs with respect to different IASls are promising problems for
future investigations.
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Problem 3.6. An integer additive set-labeling of a graph G is said to be a uniform IASL if the
cardinality of the set-labels of all edges of G is the same. Investigating the conditions required
for various graph classes to admit different types of uniform IASLs offers a strong platform for
further research.

Further studies on many other characteristics of different IASL-graphs are also interesting
and challenging. All these facts highlight the scope for further studies in this area.
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