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1. Introduction

The bedrock of any economy viewed from the aspect of finance, actuarial or management
sciences [11] is the financial market; and embedded in the financial market is a derivative
security or a contingent claim, which is a financial contract whose value at an expiration date T ,
which is written into the contract is determined by the price of some assets called the underlying.
Also, in the financial Market, there are four main kinds of derivative securities namely: options,
forwards, futures and swaps.
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An option is a derivative security which gives the holder the right but not the obligation to buy
or sell an asset in the future for a price that is agreed on today. Types of options include: a call
option which gives a financial agent the right to sell, and he is said to hold a short position.
There are several kinds of options which include the European options, American options, Asian
options, Bermudian options, look back options etc.

In financial modeling, the Geometric Brownian Motion (GBM) model has been a very useful tool
in the modeling of stock prices, this was suggested by Samuelson (1965) in [22], following the
imperfection which includes negative stock of the Bachelier’s model in [2]. The most celebrated
stock price model is the Black Scholes’ Model in [4,12], in which the demonstration of how to
price European options based on the geometric Brownian model was given. In [1], a stochastic
analysis of stock market price models is considered using a proposed log-normal distribution.

In recent times, it has been made clear after some investigations by some researchers that
the Black Scholes Model presents unrealistic assumptions such as the log returns of stocks
are not normally distributed as in the B-S model [20, 23, 27]. They are skewed and have an
actual kurtosis higher than that of the normal distribution. More so, it has been observed that
the parameters of uncertainty estimated (volatility) change stochastically over time and are
clustered. The above listed points suggest that the Black Scholes model does not give a perfect
description of financial asset prices adequately.

In order to overcome the above challenges in financial modeling, more flexible stochastic
processes with independent and stationary increments, whose distributions are infinitely
divisible, were proposed for modeling financial data [23]. These distributions are able to capture
aspect of skewness and excess kurtosis, while the associated processes are called the Levy
processes. Since the inception of the Levy models, many models have been proposed, they are
in two groups: the first group takes care of local volatility modeling, and the second considers
inputting jump component in the price dynamics. An exponential Levy model describing the
effect of the duality principle in option pricing was considered in [28]. To be useful in financial
modeling, the infinitely divisible distributions need to be able to represent skewness and excess
kurtosis. Examples of such distributions, which can take into account skewness and excess
kurtosis, are the Variance Gamma (VG), the Normal Inverse Guassian (NIG), the CGMY, the
Generalized Hyperbolic model and the Meixner distributions. Madan and Seneta [18] have
proposed a Levy process with VG distributed increments. The Hyperbolic Model was proposed by
Eberlein and Keller in [10]. Barndorff-Neilson proposed the NIG Levy process [3]. Recently, the
CGMY Model was introduced by Carr et al. in [7], and Meixner model was used in [23]. As one
of the Levy models, the VG model was introduced in 1987 by Madan and Seneta using methods
of Chebyshev polynomial approximations and characteristic function estimation, which was
used to model stock returns. Madan and Milne in [19] priced the European Call Option when
the uncertainty driving stock prices follows the VG stochastic process introduced by Madan and
Seneta in [18] and they considered the symmetric case. Using the log return mean, variance
and kurtosis, Madan and Milne in [19] approximated and identified the incomplete markets
equilibrium change of measure. A comparative analysis with the B-S model shows that the VG
option values are higher, particularly for out of the money options with long maturity in stocks
with high means, low variances and high kurtosis.
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As a three parameter stochastic process (VG process) which in practical terms, can be likened
to volatility, kurtosis and skewness with respect to the Brownian motion was developed as a
model for the dynamics of log stock prices as described in [17]. They obtained this process by
evaluating Brownian motion with drift at a random time by a gamma process. The drift of
the Brownian motion and the volatility of the time change were the two derived additional
parameters. Their results show that the two additional parameters control the skewness and
the kurtosis of the return distribution. Assuming the characteristic function of the risk-neutral
density is known, analytically, the authors in [5, 6, 26] had numerically solved for the delta
and for the risk neutral of “finishing in-the-money”. Two Fourier transforms in terms of the
characteristics function of the log of the terminal stock price which follows a VG process were
analytical developed in [8]. They illustrated their methods for the VG option pricing model and
their result shows that the use of the FFT is considerably faster than most available methods,
and that the methods described in [5,6,26] can be both slow and inaccurate [13]. In this work,
our interest is not only in the study of the VG process in terms of three parameters mentioned
but also in the VG process when it is expressed as a difference of two gamma processes.

The structure of the remaining part of the paper is as follows: Section 2 deals with basic
definitions and concepts that provide fundamentals for constructing financial models. The VG
process in terms of the parameters of the differenced gamma processes is given in Section 3, an
estimation of the moments of the VG process in terms of the parameters of the gamma processes
is derived, more so, the Levy-Khintchine formula for a variance gamma process as a difference of
two gamma processes was derived via the Frullani’s integral. Given the characteristic function
of the VG model with respect to the parameters of the differenced gamma processes, a formula
for pricing European Call option is derived for the model in Section 4, while Section 5 is on
discussion of results and a concluding remark.

2. Basic Definitions, Concept and Theorems

In this section a brief summary of several concepts, definitions, lemmas, notations and theorems
is given [14–16,24,25]. All these provide the fundamentals for constructing the financial models
used in this work.

Definition 2.1 (Characteristics Function). Let X be a random variable whose distribution
function is given F(x)= P(X ≤ x). The characteristic function φX (u) of the distribution or the
random variable is the Fourier-Stieltjes transform of the distribution. Thus we define φX (u) as:

φX (u)= E(exp(iuX ))=
∫

(iux)dF(x), i2 =−1 . (2.1)

Note 2.1. For two independent random variables, X and Y :φX+Y (u)=φX (u)φY (u).

Definition 2.2 (Characteristic exponent). The characteristics exponent sometimes called the
cumulant characteristic function is given as

ψ(u)= logE(exp(iuX ))= logφX (u) ⇒ ψ(u)= exp(ϕ(u)) .
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From the above,

k(u)= logE[exp(−uX )= logφX (u)

and

υ(u)= E[exp(uX )]=φ(−iu)

are the cumulant function and the moment-generating function respectively.

The characteristic function of a gamma distribution with probability density function (pdf) is
defined and denoted as:

f (x)=


βe−βx(βx)α−1

Γ(α)
, if x ≥ 0, β> 0, α> 0,

0, otherwise,

where X is said to be a continuous gamma random variable and α, β are positive real numbers.

Thus, upon simplification, the characteristic function is:

φGamma(u)=
(
β− iu
β

)−α
=

(
1− iu

β

)−α
.

It is useful to note that the characteristic exponent of a Gamma distribution is

ψXGamma(u)=α log
(
1− iu

β

)
, α> 0, β> 0.

2.1 The Levy Process

The geometric Brownian motion does not take into account stochastic volatility, skewness and
excess kurtosis. This is due to the fact that, log-returns are normally distributed, hence a more
flexible distribution would be needed.

In the sequel, we give the description of the following notations to enable us define the Levy
process

Definition 2.3 (Independent increments). The increments of a process are called independent
if the increments Xs − X t and Xu − Xv are independent random variables, whenever the two
time intervals do not overlap.

Definition 2.4 (Stationary increments). The increments are called stationary, if the probability
distribution of any increment Xs − X t depends only on the length s− t of the time interval, that
is, increments with equally long time intervals are identically distributed.

Definition 2.5 (Cadlag). A function f : R+ → Rd is a cadlag if it is right continuous with left
limits, i.e. f (t−)= lim

s→t
f (s), s < t and f (t+)= lim

s→t
f (s), s > t.

Definition 2.6 (Levy process). A stochastic process X = {X t, 0≤ t ≤ T} defined on (Ω,β,µ) with
X0 = 0 is called a Levy process if it possesses the following properties:
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(a) Independent increments: for any time t, such that: 0 < t0 < t1 < ·· · < tn the random
variables

X t0 , X t1 − X t0 , X t2 − X t1 , · · · , X tn − X tn−1 are independent.

(b) Stationary increments: the law of X tt+h − X t does not depend on t but only on the length h
of the interval [t, t+h].

(c) Stochastic continuity: for ε> 0, lim
h→0

p(|X t+h − X t| ≥ ε)= 0.

(d) Cadlag: sample path of X have left limit and are right continuous.

2.2 Properties of Levy Processes

We discuss here, some properties of Levy process and important results of Levy process.

Definition 2.7 (Infinitely divisible distributions). Given the characteristic function φX (u)
of a random variable X , we define the corresponding distribution as an infinitely divisible
distribution if for every positive integer n, φX (u) is also the power of the characteristic function.

In terms of X , this means that, one could write for any n:

X =Y (n)
1 +Y (n)

2 + . . .+Y (n)
n ,

where Y n
i , i = 1,2, . . . ,n are independent and identically distributed (i.i.d) random variables,

with characteristic function φ(u).

The Normal distribution N(µ,σ2) is infinitely divisible.

In fact,

φN(u;σ2,µ)= (
exp(iuµ)

)
exp

(
− 1

2n
σ2u2

)
= (φn(u))n

where φn(u)is the characteristic function of a Normal Distribution ND= N
(
µ

n , σ
2

n

)
.

If Y n
i , i = 1,2, . . . ,n are i.i.d normal random variables with ND, then:

X =Y (n)
1 +Y (n)

2 +·· ·+Y (n)
n ∼Normal(µ,σ2) .

Remark 2.1. There exist a close relationship between the distribution of a Levy process at time
t and the concept of infinitely divisible distribution. De Finetti introduced the notion of infinitely
divisible distribution and showed that they have a close relationship with Levy processes. The
following theorems show the relationship between infinitely divisible distributions and Levy
processes.

Theorem 2.1 ( [24]). Let X = {X t, t ≥ 0} be a Levy process and F(dx) be the distribution of X1.
Then the distribution is infinitely divisible. Conversely, given an infinitely divisible distribution
F(dx), then there exist a Levy process such that the distribution of X1 is F(dx).
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Theorem 2.2 (Levy-Khintchine formula [13]). Suppose α ∈ R, σ ≥ 0 and v(dx) is a measure
concentrated on {0} such that

∫
R(1∧ x2)v(dx)<∞, where we have the Levy triplet (α,σ2,v(dx))

defined for each α ∈R. Then, there exists a probability space (Ω,β,µ) on which a Levy process is
defined having characteristic exponent ψ(u).

Where

ψ(u)= iαu+ 1
2
σ2u2 +

∫
R
(1− eiux + iux1(|x|<1))v(dx) (2.2)

for as given in Definition 2.5 and 1(|x|<1) is an indicator function with
∫
R\{0}(1∧ x2)v(dx)<∞.

Equation (2.2) is called the Levy-Khinchine formula which gives an expression for characteristic
exponent ψ(u).

Remark 2.2. From the above, we can deduce that a Levy process can be decomposed into three
independent components

(i) a deterministic drift with rate α,

(ii) a continuous path diffusion volatility σ2,

(iii) a jump process with Levy measure v(dx).

Thus, (α,σ2,v(dx)) is referred to as Levy triplet.

Theorem 2.3 (Levy-Ito decomposition [16, 24]). Consider a triplet (α,σ2,v(dx)), where α ∈ R,
σ> 0 and v(dx) is a measure satisfying 0 and

∫
R(1∧x2)v(dx)<∞. Then, there exists a probability

space (Ω,β,µ) on which four independent Levy processes exist, X (1), X (2), X (3) and X (4) where
X (1) a constants drift, X (2) is a Brownian motion, X (3) is a compound Poisson process and X (4)

is a square integrable (pure jump) martingale with almost surely countable number of jumps of
magnitude less than one (1) on each finite time interval.

Taking X = X (1) + X (2) + X (3) + X (4), we have a Levy process X = {X t, t ≥ 0} with characteristics
exponent:

ψ(u)= iαu+ 1
2
σ2u2 +

∫
R

(
eiux −1+ iux1(|x|<1)

)
v(dx), for all u ∈R . (2.3)

Proof. We shall first split the Levy exponent into four parts:

ψ=ψ(1) +ψ(2) +ψ(3) +ψ(4)

where ψ(1)(u)= iuα, ψ(2)(u)= u2σ2

2 , ψ(3)(u)= ∫
|x|≥1(eiux −1)v(dx),

ψ(4)(u)= ∫
|x|<1(eiux −1− iux)v(dx).

The first part corresponds to a deterministic linear process (drift) with parameter α, the second

one to a Brownian motion with coefficient
√
σ2∗ =σ and the third part corresponds to a compound

Poisson process with arrival rate λ := v(R \ (−1,1)) and jump magnitude

F(dx) := v(dx)
v(R \ (−1,1))

1|x|≥1 .
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For the last part, let ∆X (4) denote the jumps of the Levy process, such that:

∆X (4) = X (4)
t − X (4)

t−

and let µX (4)
denote the random measure counting the jumps of X (4).

We now construct a compensated compound Poisson process

X (4,ξ)
t = ∑

0≤s≤t
∆X (4)

s 1{1>|∆X (4)
s |>ξ} − t

(∫
1>|x|>ξ

xv(dx)
)

=
∫ t

0

∫
0>|x|>ξ

xµX (4)
(dx,ds)+ t

(∫
1>|x|>ξ

xv(dx)
)

. (2.4)

Next is to show that the jumps of X (4) form a Poisson process, given the following stated
conditions:

Consider a set A ∈β(R\{0}) with 0 ∉ A and a function f :R→R, Borel measurable and finite on
A.

E
[
exp

(
iu

∫ t

0

∫
A

f (x)µL(ds,dx)
)]

= exp
[

t
∫

A
(eiu f (x) −1)v(dx)

]
.

If f ∈ X ′(A), then,

E
[∫ t

0

∫
A

f (x)µA(ds,dx)
]
= t

∫
A

f (x)v(dx) .

Combining the above conditions with the definition of characteristic exponent, and applying it
to (2.4) we have:

ψ
(4,ξ)
t = E

(
eiuX (4,ξ)

t
)

= E(exp(iu)
∫ t

0

∫
0<|x|<ξ

xµX (4)
(dx,ds))+E

(
exp iut

(∫
1>|x|>ξ

xv(dx)
))

(2.5)

⇒ ψ(4,ξ)(u)=
∫
ξ<|x|<1

(eiux −1− iux)v(dx) .

Then, there exists a Levy process X (4) which is a square integrable martingale, such that
X (4,ξ) → X (4) uniformly on [0,T] as ξ→ 0+. Clearly, the Levy exponent of the latter Levy process
is ψ4.

Therefore, we can decompose any Levy process into four independent Levy processes:

X t = X (1) + X (2) + X (3) + X (4) as follows:

X t =αt+σWt +
∫ t

0

∫
|x|≥1

xµX (ds,dx)+
∫ t

0

∫
|x|<1

x(µX −vX )(ds,dx)

where vX (ds,dx)= v(dx)(ds).

This result is the Levy-Ito decomposition of a Levy process.
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Lemma 2.1 ( [16]). A Levy process with Levy-Khintchine exponent corresponding to the triplet
(α,σ2,v(dx)) has paths of bounded variation if and only if:

σ= 0 and
∫
R
(1∧|x|)v(dx)<∞ . (2.6)

Due to the finiteness of the integral in (2.6), ψ(u)for such bounded variation process can be
written as:

ψ(u)= idu+
∫
R
(1− eiux)v(dx), d ∈R (2.7)

where d, the drift term can be expressed in terms ofαandvas

d =−
(
α+

∫
|x|<1

xv(dx)
)
. (2.8)

For instance, suppose that X = {X t; t ≥ 0} is a gamma process as defined above, for the Levy-
Khintchine decomposition, we have σ = 0, v(dx) = βx−1e−αxdx concentrated on (0,∞) and
α=−∫ 1

0 xv(dx), thus

X t = dt+
∫

[0,t]

∫
R

xN(ds, xdx), t ≥ 0

Thus, substituting into (2.7) for σ,v(dx) and α gives:

ψ(u)=
∫
R
(1− eiux)βx−1e−αxdx . (2.9)

Definition 2.8 (Subordinators). Levy processes whose paths are non-decreasing are called
subordinators. Examples are gamma processes, inverse Gaussian process etc.

Remark 2.3. (i) Any Levy process of bounded variation can be written as the difference of
two independent subordinators.

(ii) In the next section, we shall establish (2.9) via the Frullani’s integral.

2.3 The Levy-Khintchine Formula for A Gamma Process via the Frullani’s Integral

In this subsection, we state the Frullani’s identity which is a useful tool to determine the
Levy-Khintchine formula for a gamma distribution.

Lemma 2.2 (Frullani’s integral [16]). For all α,β> 0 and z ∈R such that Rz < 0, we have:(
1− z

α

)−β = exp
(∫ ∞

0
(1− ezx)βx−1e−αxdx

)
, x > 0 . (2.10)

3. The Variance Gamma Process [25]

The VG distribution is characterized by a triplet of positive parameters (C,G, M), which is
defined on the entire real line and the pdf is given as

f (z;C,G, M)= (GM)C√∏
Γ(C)

exp
(
(G−M)z

2

)( |z|
G+M

)C−0.5
KC−0.5(0.5(G+M)|z|), (3.1)

where Kv(x) is the modified Bessel function of the third kind with index v.
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On a Variance Gamma Model (VGM) in Option Pricing: A Difference of Two Gamma Processes: M.E. Adeosun et al. 9

3.1 The VG Process as A Difference of Two Subordinators

In this section, we refer to the work of Madan et al. in [17], wherein the VG process was
expressed as the difference of two independent increasing gamma processes (subordinators).
A study of the explicit relation between the parameters of the gamma processes differenced and
the parameters of the VG process is looked into.

The VG process defined as XVG(t;σ,v,θ) has three parameters viz: σ the volatility of the
Brownian motion, v the variance of the gamma time change, and θ the drift in the Brownian
motion with drift.

In Madan et al., a variance gamma random variable can be constructed as the difference of two
gamma random variables

Thus,

X (t;σ,v,θ)=Γ1(t;α1β1)−Γ2(t;α2β2) . (3.2)

The gamma process Γ(t;α,β) with mean rate α and variance rate β is the process of independent
gamma increments over non-overlapping intervals of time (t, t+h).

Given that:

m = y(t+h;α,β)− y(t;α,β) . (3.3)

Note that the differenced gamma processes have been used to model queues by Gourieroux et al.
in [15].

The density function of (3.3) is given as

fh(m)=
(
α

β

)α2h
β

(
Γ

(
α2h
β

))−1

m
α2h
β −1 exp

(
−α
β

m
)
, m > 0 . (3.4)

By definition, (3.4) has a characteristic function φy(t)(u)= E[exp(iuy(t;α,β)] given by

φy(t)(u)=
(
1− iu

β

α

)−α2
β t

.

Thus, for y1(t;α1,β1) and y2(t;α2,β2)

φy1(t)(u)=
(
1− iu

β1

α1

)−α2
1

β1
t

and

φy2(t)(u)=
(
1− iu

β2

α2

)−α2
2

β2
t

⇒ φXVG (u)=φy1−y2
(u)=φy1(u)φ−y2(u) .

Journal of Informatics and Mathematical Sciences, Vol. 8, No. 1, pp. 1–16, 2016
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By employing the property of characteristic function of the VG process

φ−y2(t)(u)=φy2(t)(−u)=
(
1+ iuβ2

α2

)−α2
2

β2
t

Thus, the characteristic function of the VG process is:

φXVG (u;σ,v,θ)=
(
1− iu

β1

α1

)−α2
1

β1
t (

1+ iu
β2

α2

)−α2
2

β2
t
.

For
α2

1
β1

= α2
2

β2
= 1

v , we have:

φXVG (u;α1,α2,β1,β2)= {
(α1α2)(α1α2 − iα2β1u+ iα1β2u− i2β1β2u)−1} t

v

⇒ φXVG (u)=
(
1− i

(
β1

α1
− β2

α2

)
u+

(
β1β2

α1α2

)
u2

)− t
v

. (3.5)

Equation (3.5) is the characteristic function of a VG process with respect to the parameters of
the differenced gamma processes (α1,α2,β1,β2).

Now, we determine the relation between the parameters of the VG process and the gamma
processes as follows:

We have that:

β1

α1
− β2

α2
= θv, 2β1β2 =σ2vα1α2 and

α2
1

β1
= α2

2

β2
= 1

v
. (3.6)

Letting ζ= β1
α1

, µ= β2
α2

, a = θv, b = σ
2

v
2 into (3.6) gives:

ζ−µ= a and ζµ= b . (3.7)

So considering ζ and µ from (3.7) in terms of a and b, we get:

α1 = 1
2

√
θ2 + 2σ2

v
+ θ

2
, (3.8)

α2 = 1
2

√
θ2 + 2σ2

v
− θ

2
, (3.9)

β1 =
1

2

√
θ2 + 2σ2

v
+ θ

v

2

v , (3.10)

β2 =
1

2

√
θ2 + 2σ2

v
− θ

2

2

v . (3.11)

Remark 3.1. The equations in (3.8)-(3.11) show the relation between the parameters of the VG
process and parameters of the Gamma process (see Appendix in [17]).
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3.2 Moments of the VG Process in Terms of the Parameters of the Gamma Processes

By method of deriving moments, given a characteristic function, [21]

MX (n)= E(X n)= 1
in

dnφX (u)
du

, at u = 0 . (3.12)

Using (3.12) and (3.5), we derive the moments of the VG process. The result is summarized
in Table 1 below showing the properties of the VG process in terms of the parameters of the
differenced Gamma processes.

Table 1. Moments of the VG process in terms of the parameters VG(α1,α2,β1,β2)

VG(α1,α2,β1,β2) VG(α1 ≡β1;α2 ≡β2), Symmetric case

Mean α1 −
α2

1β2

α2β1
= α2

2β1

α1β2
−α2 0

Variance
2β2α1

α2
+ β1

α2
1

(
α1 −

α2
1β2

α2β1

)2
2β2α1

α2
≡ 2α1 for α2 =β2

Skewness

(
β1

α1
− β2

α2

)[
6β2α1

α2
+ 2β1

α2
1

(
α1 −

α2
1β2

α2β1

)2]
[

2β2α1

α2
+ β2

α2
1

(α1 −
α2

1β2

α2β1
)2

] 2
3

0

Kurtosis 3+ 6β1

α2
1

− 12β3
2

α2
2

[
2β2α1

α2
+ β1

α2
1

(α1 −
α2

1β2

α2β1
)2

]−2

3

(
1+ β1

α2
1

)
≡ 3

(
1+ 1

α1

)
for α1 =β1

Remark 3.2. We note here that the VG distribution is symmetric if the parameters α1 =β1 and
α2 =β2. Under the conditions of α1 <β1 and α2 <β2, the results lead to a negative skewness.
Also the parameter α1controls the kurtosis.

3.3 The Levy-Khintchine Formula for A Variance Gamma Process as A Difference of
Two Gamma Processes

In the previous sections, we had discussed extensively on the derivation of the Levy-Khintchine
formula for a gamma process via the Frullani’s integral. It has also been established that the
VG process can be expressed as a difference of two gamma processes. Thus, we now apply the
concept of finding the Levy-Khintchine formula for the VG process in terms of the parameters
of the gamma processes.

We can deduce from (2.10) that:

(
1− iu

β1

α1

)−α2
1

β1
t
= exp

(
−

∫ 1

0
(1− eiux)

α2
1t
β1

e−
α1
β1

xdx

)
, x > 0 (3.13)

and (
1+ iu

β2

α2

)−α2
2

β2
t
= exp

(
−

∫ 1

0
(1− eiux)

α2
2

β2
t e

α2
β2

xdx

)
, x > 0 . (3.14)
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Thus, it implies from (2.10), (3.5), (3.13) and (3.14) that:(
1− i

(
β1

α1
− β2

α2

)
u+

(
β1β2

α1α2

)
u2

)− t
v

= exp

(
−

∫ ∞

0
(1− eiux)

α2
1

β1
te

−α1
β1

xdx−
∫ ∞

0
(1− eiux)

α2
2

β2
te

α2
β2

xdx

)
. (3.15)

4. Option Pricing for the VG Model using the Characteristic
Function [29]

Let X t be an exponential VG process, which is also an exponential Levy process where X0 = 0
at t = 0.

Assume that the price of a risky asset in a risk-neutral world is given by

St = S0eX t (4.1)

where S0 is the price of the asset at time t = 0

E(eX t)= 1 . (Exponential martingale condition)

Given that the pdf of X t is f t(x), then the price of any European option with expiration date T ,
and payoff h(ST) is given as:

P =VT

∫ ∞

−∞
ST fT(x)dx ⇒ P =VT

∫ ∞

−∞
h(S0eXT ) fT(x)dx (4.2)

where VT is the discounted price (factor) VT = e−rT .

In [9], the price of a European call option with strike at K is given by:

C(K)= FTVT

∫ ∞

K
(ex − eK ) fT(x)dx, K = ln

(
K
FT

)
. (4.3)

Recall that:

φX t(u)= E(eiux)=
∫ ∞

−∞
eiux f t(x)dx

which is also called the Fourier transform of the pdf f t(x).

We remark as follows that:

(i) The VG model is an example of models that do not offer a closed form for the terminal
density but they do have closed forms for the characteristic functions [29].

(ii) We can write the price of the European options as the integral of the product of the Fourier
transform of the payoff and the characteristic function.
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Thus, given the Fourier transform (FT) of the payoff and the characteristic function as:∫ ∞

−∞
eiuxh(ST)dx = D(u) and φT(u)=

∫ ∞

−∞
eiux fT(x)dx .

Respectively, we can therefore denote the product of D(u) and φT(u) by P(T) such that:

P(T)=VT

∫ ∞

−∞

(
(G(u))cφT(u)

)
du, c ∈C is a complex conjugation.

The European call option (28) with strike at K can be rewritten as:

C(K)= FTVT

∫ ∞

−∞

[
e−(1+θ)x(ex − eK )+

][
e(1+θ)x fT(x)dx

]
. (4.4)

We take the Fourier transform (FT) of the terms in the square brackets to get the following.

For the first square bracket, we get:∫ ∞

−∞
eiuxe−(1+θ)x(ex − eK )dx .

Thus, with a strike at K , we have:∫ ∞

K
eiuxe−(1+θ)xexdx−

∫ ∞

K
eiuxe−(1+θ)xeK dx = eK(θ−iu)

(θ− iu)
− eK(θ−iu)

(1+θ)− iu

= eKθe−iuK

θ2 +θ−u2 − i(2θ+1)u
. (4.5)

Similarly, the FT of the terms in the second square bracket gives:∫ ∞

−∞
eiuxe(1+θ)x fT(x)dx =φ(u− (1+θ)i) . (4.6)

Substituting (4.5) and (4.6) into (4.4) gives:

C(K)= FTVT

∫ ∞

−∞
eKθeiukφ(u− (1+θ)i)
θ2 +θ−u2 + i(2θ+1)u

du .

The modified European call option is thus given as:

⇒ C(K)= FTVT
eKθ

2
∏ ∫ ∞

−∞
eiukφ(u− (1+θ)i)

θ2 +θ−u2 + i(2θ+1)u
du . (4.7)

Equation (4.7) is true since by the inner product form of Parseval’s theorem [28],∫ ∞

−∞
g(x)(h(x))cdx = 1

2
∏ ∫ ∞

−∞
G(u)(H(u))cdu

where G(·) and H(·) are the FT of g(·) and h(·), respectively.

For a detailed derivation of (4.7), we refer the reader to Carr et al. [9].

We now derive the price of the European call option for a VG model when it is expressed as a
difference of two gamma processes as follows:
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Given the characteristic function of the VG process in (3.5), we determine φ(u− (1+θ)i), for
u = u− (1+θ)i, we get

φXVG
T

(u− (1+θ)i,α1,α2,β1,β2)

= 1

1− i β1
α1

u+ β2
α1

(1+θ)i+ i β2
α2

u+ β2
α2

(1+θ)+ β1β2
α1α2

u− β1β2
α1α2

(1+θ)i

= α1α2

α1α2 − i(β1α2 −α1β2)u− (β1α2 −α1β2)(1+θ)+β1β2(u− (1+θ)i)

=α1α2H−1(u) ,

where H(u)=α1α2 − [iu+ (1+θ)][β1α2 −α1β2]+β1β2[u− (1+θ)i].

Hence, the modified European call option with strike at K for a VG model expressed as a
difference of two gamma processes y1(t;α1β1) and y2(t;α2,β2) is given as:

Ĉ(K)= FTVT
eKθ

2
∏α1α2

∫ ∞

K

(
e−iuK H−1(u)

θ2 +θ−u2 − i(2θ+1)u

)
du . (4.8)

5. Discussion of Results and Concluding Remarks

In this paper, we considered a detailed study of a three parameter stochastic process known
as Variance-Gamma (VG) process with respect to a Brownian motion. A particular case of the
VG process expressed as a difference of two gamma processes was highlighted. We obtained
the moments of the VG process in terms of the parameters of the gamma processes using
characteristic function of the VG process with regard to the parameters of a differenced gamma
process. It is noted that the VG distribution is symmetric if the parameters α1 = β1 and
α2 =β2. Also, under the conditions: α1 <β1 and α2 <β2, we have a case of negative skewness;
while the parameter α1 in the VG distribution controls the kurtosis. In addition, the Levy-
Khintchine formula for the process was derived via the Frullani’s integral. Finally, we proposed
a modified European call option model incorporating a difference of two gamma processes via
the application of the characteristic function corresponding to the VG.
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