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Abstract. We have introduced characterized semiring in this study. We have discussed the properties
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1. Introduction
H. S. Vandiver proposed the idea of semiring in 1934 [16]. Semiring is a natural topic in
mathematics and it is broad and diverse mathematical topic, this issue has a significant impact
on both mathematics and computer science. In this paper, we have characterized different
classes using different ideals. Throughout this paper, triplet (S,+, ·) for semiring and (W ,+, ·)
represents several types of regular semiring that will be revealed when necessary. Here we
have introduced quasi-ideals and bi-ideals to describe additional classes. We have proved some
results using m-ideals and (m,n)-ideals with the help of Amla et al. [1], Munir and Habib [3],
Munir and Shafiq [4], Shabir et al. [12] and Sulochana et al. [15]. Also, Munir and Habib [3] and
Munir and Shafiq [4] have studied regular semirings using quasi-ideals and bi-ideals we have
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characterized three classes of semirings (regular semirings, intra-regular semirings and weakly
regular semirings) using these ideals.

2. Preliminaries
Definition 2.1 ([8,15]). A semiring (S,+, ·) is an algebraic system with two binary operations +
and · such that (S,+) is commutative semigroup and (S, ·) is semigroup and following properties
hold:

a(b+ c)= ab+ac and (b+ c)a = ba+ ca, for all a,b ∈ S.

Definition 2.2 ([8,15]). A non-empty subset C of a semiring (S,+, ·) is said to be subsemiring if
C itself is semiring under the operations of semiring S.

Definition 2.3 ([8,15]). Let (S,+, ·) be a semiring. A subsemigroup (C,+) of (S,+, ·) is said to be
quasi ideal if SC∩CS ⊆ C.

Definition 2.4 ([8]). A subsemiring C of a semiring S is called (m,n) quasi-ideal of S if
SmC∩CSn ⊆ C where m,n ∈ Z+.

Definition 2.5 ([12]). Let (S,+, ·) be a semiring. A subsemiring B of (S,+, ·) is said to be bi-ideal
if BSB ⊆ B.

Definition 2.6 ([4]). Let (S,+, ·) be a semiring. A subsemiring B of (S,+, ·) is said to be m
bi-ideal if BSmB ⊆ B where m is called the bipotency of bi-ideal B.

Example of bi-ideal is given below:

Example 2.1. Let S =
{(

i j
k l

)
: i, j,k, l are in Z+

}
.

Than, clearly S is semiring under usual addition and multiplication of matrices.

B1 =
{(

t 0
0 0

)
: t is in Z+

}
is bi-ideal of S.

3. Characterizing Semirings
Theorem 3.1. every (m,m)-quasi ideal Q of a semiring S is an m-bi ideal of S.

Proof. Consider

QSmQ ⊆QSmS =QSm+1 ⊆QSm.

Thus

QSmQ ⊆QSm. (3.1)

Similarly,

QSmQ ⊆ SmQ. (3.2)

On combining (3.1) and (3.2), we obtain

QSmQ ⊆QSm ∩SmQ ⊆Q.
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Thus QSmQ ⊆Q, that Q is m-bi ideal.

Theorem 3.2. For every m ≥ 1 every bi-ideal is an m-bi ideal.

Proof. If B is bi-ideal of a semiring S than BSB ⊆ B can be written as BS1B ⊆ B implies that
B is bi-ideal with bipotency m = 1.
The converse of the above result is not true given by example:

S =




0 a b c
0 0 d e
0 0 0 f
0 0 0 0

 : a,b, c,d, e, f are in R+

 and A = S0 = S∪


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

Than (A,+, ·) is a semiring under the usual operation of addition + and multiplication · of
matrices. Let

S =




0 a 0 0
0 0 0 0
0 0 0 f
0 0 0 0

 : a, f are in R+

∪


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

Than B is 2-bi-ideal of A as BA2B ⊆ B and BAB ⊈B.

Theorem 3.3. Every quasi-ideal of a semiring S is subsemiring of S.

Proof. Suppose N be a quasi-ideal of S. Than, by definition (N,+) is subsemigroup of S.
Consider N2 = N ·N ⊆ SN , i.e., N2 ⊆ SN and N2 ⊆ NS.
So N2 ⊆ SN ∩ NS ⊆ N , i.e., N2 ⊆ N , i.e., N is closed multiplicatively, implies that N is
subsemiring of S.

Theorem 3.4. Any bi-ideal with bipotency max{m1,m2, . . .} is the intersection of family of bi-
ideals of S with bipotencies m1,m2, . . ..

Proof. Let {Gr : r ∈Ω} be a family of bi-ideals of a semiring S than G = ⋂
r∈Ω

Gr is the sub-semiring

of S which is the intersection of subsemirings of S (where Ω is the index set for r).
Since

GrSmrGr ⊆Gr, for all r ∈Ω
and

G ⊆Gr, for all r ∈Ω.

Therefore,

GSmax{mr :r∈Ω}G ⊆GrSmrGr ⊆Gr, for all r ∈Ω,

that is,

GSmax{mr :r∈Ω}G ⊆Gr, for all r ∈Ω.

This gives

GSmax{mr :r∈Ω}G ⊆ ⋂
r∈Ω

Gr =G.
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So

GSmax{mr :r∈Ω}G ⊆G.

Thus G is m-bi-ideal with bipotency max{m1,m2, . . .}.

4. Characterizing Regular Semirings
Definition 4.1 ([3, 12]). Let (S,+, ·) be a semiring an element a of a semiring (S,+, ·) is
considered to be regular if a = axa for some x ∈ S if every element of semiring is regular
than it is considered to be regular semiring, e.g., Z2 is regular semiring also R set of reals is
regular semiring.

Theorem 4.1. If W is regular semiring than RL = R ∩ L for every right-ideal R of A and
left-ideal L of W .

Proof. Suppose W is regular and assume that R and L be right-ideals of W than

RL ⊆ R∩L . (4.1)

For any x ∈ W as W is regular ∃ some y ∈ W such that we will have x = xyx = (xy), x ∈ RL
because R is right-ideal implies that x ∈ RL.
Hence

R∩L ⊆ RL . (4.2)

On combining (4.1) and (4.2) we get RL = R∩L.

Theorem 4.2. Let W be a semiring with multiplicative identity 1 than the following are
equivalent:

(i) U ∩V ⊆VU for any right-ideal U and left-ideal V of W .

(ii) Every α ∈W can be written as α=
n∑

i=1
xiα

2 yi , where xi, yi ∈W .

Proof. (i)⇒(ii): Let α ∈W . Let U =αW and V =Wα be the right and the left-ideal generated by
α, respectively.

Than by

U ∩V ⊆VU , α ∈U ∩V

implies that

α ∈VU .

So

α=
n∑

i=1
xiα

2 yi.

(ii)⇒(i): Let α ∈U ⊆V than α ∈U and α ∈V .

Also, by (ii) α= ∑
finite

xiα
2 yi = ∑

finite
(xiα)(αyi) ∈UV .

So U ∩V ⊆VU .
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Theorem 4.3. If W is a regular semiring than for all bi-ideals C, quasi-ideals D and any ideal
I the given conditions holds:

(i) I ∩C = CIC,

(ii) I ∩D = DID.

Proof. (i): Suppose W is regular semiring, I is any ideal of W and C is any bi-ideal of W than
CIC ⊆ I and CWC ⊆ C. Thus CIC ⊆ I ∩C.
Let x ∈ I ∩C than x = xyx, for some y ∈W .
Now x = xyx = x(yxy)x ∈ CIC. Thus, I ∩C = CIC.

(ii): Let I be any ideal of W and D be any quasi-ideal of W . As we know that every quasi-ideal
is bi-ideal.
Therefore, by part (i), I ∩D = DID.

5. Characterizing Intra-regular Semirings
Definition 5.1 ([12]). A semiring S with unity (e = 1) is called intra-regular if, for all a ∈ S can

be written as a =
n∑

i=1
xia2 yi , where xi, yi ∈ S. Therefore, if one of the criteria of Theorem 4.2 is

satisfied, than a semiring S with multiplicative identity (e = 1) is said to be intra-regular.

Theorem 5.1. For a regular and intra-regular semiring W which contains 1 than B2 = B for
every ideal B of W .

Proof. Let B be any bi-ideal of W than B2 ⊆ BWB. Since W contains multiplicative identity 1.
But BWB ⊆ B. Thus

B2 ⊆ B . (5.1)

Let b ∈ B than

b = bxb, for some x ∈W .

Since W is regular and intra-regular therefore we can write

b = ∑
finite

xib2 yi, for some xi, yi ∈W .

Thus

b = bxb = bxbxb = bx

( ∑
finite

xib2 yi

)
xb = ∑

finite
(bxxib)(byixb).

Since b ∈ B, therefore

b(xxi)b ∈ BAB ⊆ B and b(yix)b ∈ BAB ⊆ B.

Thus

b = ∑
finite

(bxxib)(byixb) ∈ BB = B2.

Hence

B ⊆ B2. (5.2)

On combining (5.1) and (5.2) we get B = B2. Hence result follows.
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Theorem 5.2. If W is regular and intra-regular semiring having multiplicative unity 1 than
B∩L ⊆ BLB for any left-ideal L and bi-ideal B of semiring W .

Proof. Suppose W is regular and intra-regular and let a ∈ B∩L, than a ∈ B and a ∈ L.
Since W is regular and intra-regular therefore we can write a = axa and

a = ∑
finite

xia2 yi, where xi, yi ∈ S.

Now

a = axa

= axaxa

= ax

( ∑
finite

xia2 yi

)
xa

= a

( ∑
finite

xxia2 yixa

)

= a

( ∑
finite

xxia

)
(ayixa) ∈ BLB

⇒ a ∈ BLB (because ayixa ∈ BWB ⊆ B)

Since a is chosen arbitrarily which belongs to BLB,
⇒ B∩L ⊆ BLB.

6. Characterizing Weakly Regular Semirings
Definition 6.1 ([4]). A semiring S is said to be right weakly-regular semiring if for each a ∈ S,
a ∈ (aS)2. Thus, if S is commutative than S is weakly regular iff S is regular.

Theorem 6.1. The following are equivalent for a semiring W with multiplicative identity 1:
(i) W is weakly-regular,

(ii) T2 = T , for all right-ideals T of W ,

(iii) for every ideal I of W , T ∩ I = TI .

Proof. (i)⇒(ii): Since it is obvious that T2 ⊆ T . Now for converse suppose a ∈ T so a ∈ (aT)2.
Hence a ∈ T2. So T = T2.
(ii)⇒(iii): Let a ∈ I . Since

a ∈ (xW)= (xW)2

⇒ a = ab, for some b ∈ I.

For a right-ideal T of W obviously TI ⊆ T ∩ I . Let a ∈ T ∩ I than ∃ b ∈ I : a = ab. Thus a ∈ TI ,
i.e., T ∩ I ⊆ TI . So T ∩ I = TI .

(iii)⇒(i): Let a ∈W , than

a ∈ (aW)∩ (WaW)= (aW)(WaW)⊆ (aW2)(aW)⊆ (aW)(aW),

this implies a ∈ (aW)2. Hence W is right weakly regular.
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Theorem 6.2. If W is right weakly regular semiring with identity 1 than B∩ I ∩R ⊆ BIR for
bi-ideals B ideal I and right-ideal R of W .

Proof. Suppose x ∈ (B∩ I ∩R)⇒ x ∈ B, x ∈ I , x ∈ R.
Since x ∈W and it is given that W is right weakly regular implies that x ∈ (xW)2, i.e.,

x = ∑
finite

xr ixsi, for some si ∈W .

Now

x = ∑
finite

xsixr i

= ∑
finite

xsi

( ∑
finite

xsixr i

)
r i

= ∑
finite

xaixbixci,

where ai,bi, ci ∈W .
Thus

x = ∑
finite

x(aixbix)ci ∈ BIR.

Hence B∩ I ∩R ⊆ BIR.

Theorem 6.3. If W is a semiring with unity than the following conditions are equivalent for all
bi-ideals U , quasi-ideals X and two sided ideals V :

(i) W is right weakly regular,

(ii) U ∩ I ⊆UI ,

(iii) X ∩ I ⊆ X I .

Proof. (i)⇒(ii): Assume a ∈U ∩V than a ∈U and a ∈V .
Since a ∈W and W is right weakly regular it implies that a ∈ (xW)2, i.e.,

a = ∑
finite

xr iasi, for some r i, si ∈W .

Now

a = ∑
finite

x(r iasi) ∈UV .

Thus

U ∩V ⊆UV .

(ii)⇒(iii): Since a quasi-ideal is bi-ideal so by (ii) X ∩ I ⊆ XV .
(iii)⇒(i): Since a one sided ideal is quasi-ideal, therefore by (iii) X ∩V ⊆ XV . But XV ⊆ X ∩V .
Therefore, X ∩V = XV .
So by the Theorem 6.1 W is right weakly regular.

7. Few Semiring Applications in Electronics and Programming
More specifically, we look at how semirings are used in electronic logic gates and computer
binary language to help us decide whether a result is strong or not using the 0 and 1 digits
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Here, we will describe how to use the semiring set B = (0,1) in various operations.
Logic gates are electronic circuits with several inputs and a single output. The three basic

logic gates are AND, OR, and XOR gates.The NAND, NOR, EXCLUSIVE-OR, and EXCLUSIVE-
NOR gates are additional logic gates that are derived from these fundamental gates.

Application of Logic Gates
Logic gates are the foundation of decision-making processes and task coordination in the digital
world. It is a mathematical application of Boolean algebra and an electronic description of
logical reasoning. We shall discuss the workings of the AND, OR, and XOR gates in relation to
the set B = (0,1) in terms of various semiring operations.
Let’s construct two binary operations on B, namely (max and ◦), which are defined as for
each a,b of Bmax(a,b) = greater of the two inputs and ◦ is defined as a ◦ b = a+ b, if a ̸= b
otherwise 1. An OR gate is a gate that accepts two inputs simultaneously in the form of 0, and 1.
The mechanism of the ring in the OR gate under the specified operation is shown in the table
below.

OR Gate
0 0 0
0 1 1
1 0 1
1 1 1

The above table gets inputs from the first 2 columns and outputs them in the third column
under the conditions of the operations (max) and (◦) that we previously described.
This is the mechanism of the above ring under the above defined operations that is employed
in OR gates of electronic studies to draw conclusions. In this table, the third column 1 and 0
values denote a strong and a weak result, respectively.

AND Gate
In contrast to the previous table, the current one’s operations are (min) and ordinary
multiplication, (·) where (min) and (·) are defined as the least input for each of the variables a,b
in B and a ·b = ab, respectively. As an illustration, the semiring (B,min, ·) possesses additive
identity as well as multiplicative identity.

The sole firm conclusion based on the gate mechanism makes this semiring an idempotent
commutative semiring, which is why it is so beautiful.

0 0 0
0 1 0
1 0 0
1 1 1

XOR Gate
In this structure, the operations used are +2 means addition modulo 2 defined as usual and
aτb defined as aτb = a+b−2ab, for all a,b ∈ B with respect to these operations the mechanism
follows ring structure.
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0 0 ◦
0 1 1
1 0 1
1 1 0

8. Conclusion
This study introduces semirings, regular semirings and its kinds have been described
using quasi-ideal and bi-ideal features, and some semiring applications in electronics and
programming are demonstrated. The work can be extended to m-k ideals in gamma semirings
and applications can be extended on different boolean structures.
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