
Journal of Informatics and Mathematical Sciences
Vol. 7, No. 1, pp. 21–48, 2015
ISSN 0975-5748 (online); 0974-875X (print)
Published by RGN Publications http://www.rgnpublications.com

An Hybrid Method for Feature Selection
based on Multiobjective Optimization
and Mutual Information Research Article

Enguerran Grandchamp1, Mohamed Abadi2 and Olivier Alata3

1Laboratoire LAMIA, Université des Antilles et de la Guyane, Campus de Fouillole, 97157 Pointe-à-Pitre
Guadeloupe, France
2 Institut XLIM-SIC, UMR CNRS 6172, Université de Poitiers, BP 30179, 8962 Futuroscope-Chasseneuil, Cedex
France
3Lab. Hubert Curien, UMR CNRS 5516, Univ. Jean Monnet Saint-Etienne, Univ. Lyon, 42000, Saint-Etienne,
France
*Corresponding author: egrandch@univ-ag.fr

Abstract. In this paper we propose a hybrid approach using mutual information and multi-objective
optimization for feature subset selection problem. The hybrid aspect is due to the sequence of a
filter method and a wrapper method in order to take advantages of both. The filter method reduces
the exploration space by keeping subsets having good internal properties and the wrapper method
chooses among the remaining subsets with a classification performances criterion. In the filter
step, the subsets are evaluated in a multi-objective way to ensure diversity within the subsets. The
evaluation is based on the mutual information to estimate the dependency between features and
classes and the redundancy between features within the same subset. We kept the non-dominated
(Pareto optimal) subsets for the second step. In the wrapper step, the selection is made according
to the stability of the subsets regarding classification performances during learning stage on a set
of classifiers to avoid the specialization of the selected subsets for a given classifiers. The proposed
hybrid approach is experimented on a variety of reference data sets and compared to the classical
feature selection methods FSDD and mRMR. The resulting algorithm outperforms these algorithms
and the computation complexity remains acceptable even if it increases with regards to these two fast
selection methods.
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1. Introduction
Feature Selection (FS) is an active topic of interest since about 20 years [49]. As a consequence,
a large number of algorithms have been proposed by the research community. The basic idea
of feature selection is to select a subset from a large set of features. It can be considered as
a particular instance of Feature Weighting (assigning weights to features according to their
importance for a given application) [57]: weights are set to 0 or 1 instead of a real value in the
range [0,1]. In addition to this, FS is a branch of the Dimension Reduction problem [20]. The
other branch is Feature Extraction [16] whose aim is to produce new features by combining
several initial features. FS is an important task in many fields such as text characterization
[11], image research [8], bioinformatics [46], color image processing [42], data mining ([37],
[38]), etc. The aim is to select relevant features for knowledge interpretation or representation,
computation time reduction and overall improvement in performance(such as classification
accuracy). Indeed, the size of the subset has an influence on the computation time, and its
representativeness of the quality of the post treatments.

The relevancy of the features can have different definitions depending on the application: in
knowledge interpretation or representation [34], the size reduction and the semantic and/or
the diversity of the selected features are important in order to keep in a lower dimension the
topological structure of the information [51]; for classification applications [41], relevancy is
directly linked to a good rate in learning or classification; in protein biomarkers identification
[20], the reduction of the feature subset size and its stability when applying different learning
sets are more important than classification performances. The relevancy is linked to the quality,
the complexity, the diversity or the performance of the feature subset.

Depending on the application and constraints (such as time, performances, etc.) different
approaches have been developed to select a subset of features. These approaches differ by their
research method to explore the subsets, their criterion for comparing and ranking them and
their selection process.

In this paper, we design a hybrid method to combine the advantages of both filter and
wrapper approaches: a fast (filter) way to select diversified subsets (multi-objective) having good
internal properties (filter) and a final selection based on performances (wrapper). The stability
criterion avoid specializing the subsets to a given classifiers.

After a general presentation of the main exploration methods, the fitness functions and
selection processes are presented in section 2. Section 3 presents the multi-objective principle.
Then in section 4, we present the hybrid method and the criterions. In section 5, some
formalism is given concerning the criterion, the non-domination principle and the algorithm.
The experiments on benchmarking database, classification and segmentation applications are
given in section 6. Finally, section 7 gives conclusions and perspectives of the work.

2. Background: the feature selection problem
During the last years, many papers have been published on the modeling [49] and the description
([20], [46], [53]) of feature selection problem.In this section, we summarize the main ideas
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implemented in the different feature selection approaches. Categorization is done according to
exploration methods, fitness function or selection process.

The main search strategies [54] are:

• Greedy methods based on sequential approaches such as Sequential Forward Selection
(SFS) and Sequential Backward Selection (SBS). These methods respectively add or
remove one feature at each iteration [55].

• Sequential Forward Floating Selection (SFFS) and Sequential Backward Floating
Selection (SBFS). These methods alternate Forward and Backward steps ([24],[35]).

• Genetic Algorithms (GA) ([6], [13]) which are evolutionary methods managing a population
of subsets which evolves generation after generation using crossover and mutation
operators ([18], [56]).

• Or other strategies like Tabu Search [59] or Ant Colony [26].

The exhaustive search is excluded in most of the cases because the number of feature subsets
within a set of size n, is 2n. This leads to a very time consuming exploration as soon as n
is greater than 20. This procedure even becomes impossible when the number of attributes
drastically increases to reach hundreds or thousands.

The main fitness function used to evaluate the candidate subsets are based on:

• A quality measure evaluated on each features separately: Dependency [40], entropy
[7], relief-f ([25], [30], etc.), distance measures [33], statistical measures [42] and more
recently probabilistic measures based on the estimation of Mutual Information ([34],
[40]); or directly on the subset: correlation, redundancy [40], Information Criteria [1], for
example.

• A performance measure: the good classification rate ([9], [60]) or error rate ([4], [41])
during the learning step of a classifier applied on the candidate’s subset.

• A complexity measure: the cardinality of the subset ([17], [21], [41]), the complexity of the
classifiers (size of a decision tree [38] or Neural Network [22]).

The selection processes commonly used are:

• A single candidate selection for sequential approaches: maximization (classification rate,
relevancy, etc.) or minimization (error rate, correlation, etc.) of the criterion.

• Multiple candidates for evolutionary approaches (GA [4], [60]): multiple selection wheel
based on the previous criterion.

At the end of the exploration, one (or more) solution(s) is (are) returned and must be evaluated.
The commonly used evaluation is based on their performances in a classification context.

These different approaches lead to the separation of the methods in four families. This
separation is mainly based on how to compare and to rank the subsets: wrapper [29], filter [43]
and embedded [54] methods.
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• Wrapper methods use a machine learning algorithms during the exploration step to
evaluate the candidate’s subsets and the corresponding classifier during the evaluation of
the returned solution (test stage). In this context, the feature selection is often used to
improve or accelerate a classifier. In most cases, this approach gives the best performances
when applying the final evaluation and is probably the most pertinent. But it is also time
consuming because it requires the training of a large number of classifiers, a manual
specification of many parameters and an expertise in machine learning.

• Filter methods do not use any feedback from the classifiers and use an independent
criterion to measure the quality of the feature subsets. These methods are the most
popular because they considerably reduce the computation time [25]. Moreover, the risk
of over-fitting with wrapper methods do not exist with filter methods which are better in
generalization.

• Embedded methods try to combine the advantages of both approaches [15]. They
include the feature selection step in the learning phase of a classifier. Nevertheless,
the computation times till remain important and a classifier is used to rank the feature
subsets.

• Hybrid methods use a sequence of Filter and Wrapper methods ([3], [5], [40], [48], [52]).

More details are given in the previous references and particularly in [20] and [51] which are
surveys of methods.

3. Mono or Multiobjective approach
Most of the time the exploration methods deal with a single criterion ([3], [4], [12], [20], [21],
[22], [25], [23], [36], [40], [41], [50], [55], [60]).

However the use of only one characteristic to rank and select the subsets is insufficient in
many cases. Authors then defined combinations of several criterions to integrate quality and
performance. In practice, defining a combination of criterions is not an easy task. It depends on
the application and often requires parameters to balance the different parts of the criterion. For
example, in [40] the authors combine Dependency and Redundancy in a unique criterion called
mRMR (minimal-redundancy-maximal-relevance). In [27] they use the notion of support for
associations in data mining and combine two expressions favoring small and large supports. In
most of studies ([21], [41], [56], [60]), the performance criterion (such as classification rate) is
modified in order to penalize subsets with high number of selected features.In the same way
Information Criteria (IC, [1], [47]) are written as a sum of a maximum likelihood based term,
for the quality measure, with a penalty term depending on the complexity of the subset.This
leads to different expression of the IC (Akaike IC (AIC), Bayesian IC (BIC) or ϕβ). However
these criterions generally have opposite behaviors because increasing the performances often
requires adding features which increase complexity. The aggregation of these objectives into
a single one requires a normalization and weighting of the two objectives and it is possible to
investigate alternative ways of aggregation than the classical IC. Moreover,these computations
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implicitly establish a total order relation between the candidate solutions leading to a unique
solution and avoiding the emergence of diversified solutions.

In order to bypass this drawback, a multi-objective approach has been adopted in some
studies ([9], [17], [18], [38], [19]) to solve the FS problem. A multi-objective approach try to
simultaneously optimize several (mainly two) fitness functions during the exploration. However
the criterions often have opposite behaviors leading to non dominated solutions [23] (i.e. a
solution is better than another one according to one criterion and worse according to the other
one). Indeed, if mono-objective optimization can deal with a unique solution evolving during the
iterations, a multi-objective optimization leads to a set of non dominated solutions. This set is
called the Pareto set [23].

For the FS problem, the different approaches ([9], [10], [17], [18], [38]), deal with wrapper
methods using GA as exploration method. GA is the most popular method to explore a wide
space without a priori knowledge due to its stochastic convergence [14] and its ability to manage
with different kind of solutions. Moreover, the use of a simple binary encoding and standard
crossover and mutation seems to be attractive for the FS problem.

Nevertheless, the multi-objective approach is always implemented in a very simple way.
One of the objective is the cardinality of the subset and the other one a classification rate or
error rate. In ([37], [38]), the approach is nevertheless less trivial as it uses a decision tree to
evaluate the feature subsets (the two objectives being the global error rate during the learning
step and the size of the resulting tree representing the complexity of the solution), GA and
aMulti-Objective Forward Sequential Search (MOFSS) to explore the subsets.

In a two-objective optimization, taking the minimization of the cardinality as first objective
is equivalent to keep at most one subset for a given cardinality in the Pareto front. Indeed, for a
given cardinality the only retained subset is the one optimizing the second objective, and if a
subset with lower number of features has a better second objective this subset is not kept in the
Pareto front. In such condition, fixing the number of features directly leads to a unique solution
which shows a lack of diversity.

All these approaches try to optimize both the complexity of the model (minimization of
the number of features or size of the decision tree) and the performances (classification rate
maximization or error rate minimization). The main observations are that (i) only wrappers
approaches have been explored in a multi-objective way; (ii) both GA and MOFSS returned a
few number of solutions. Let us recall that the main drawbacks of the wrapper approach are the
computation time and the dependence of the selected features to the classification algorithm
used during the exploration. This has been underline as a problem for biomarkers selection
[20].

4. The proposed hybrid approach
4.1 Combination of Filter and Wrapper approaches
Hybrid methods combining Filter and Wrapper methods are proposed in the literature ([3],
[5], [25], [40], [48], [51]) but the main objective of these works is to reduce the computation
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time. Indeed the criterion used in the wrapper step is the classifier performance in a mono-
objective approach. The filter method is used to reduce the exploration space in a very high
dimensional data set [51] by evaluating the quality of the features in a mono-objective way:
Kullback-Leiberdistance between histograms of feature values [3]; mRMR criterion [40]; the
relief criterion [25] and [30]; the relative certainty gain [48].

The way to select the subsets for the second stage (the wrapper step) represents the main
differences between the approaches. In [3] they select the features by fixing a threshold on
the Kullback-Leiber distance; In [40], they keep visited subsets having a classification error
(obtained by applying a classifier on the subset) under a given threshold; In [48] a threshold is
also used for the statistical test.

As the number of features is reduced by the filter step, the wrapper step manages the
retained features by the mean of a classical GA ([3], [25]) or sequential forward and backward
search ([40], [48]) with a classification accuracy criterion.

We propose a hybrid method by combining the Filter and the Wrapper methods in two
sequential steps. The approach we adopt improves the lack of diversity of the solutions returned
by standard algorithms and reduces the dependency between subsets and classifiers. These
improvements are due to a wider exploration of subsets which increases complexity. The
computation time remains acceptable thanks to the use of a fast filter approach and a controlled
exploration of Pareto solutions during the first step of our method (see section ?? for more details
about computation complexity and computation time). These procedures coupled with a multi-
objective approach with two quality objectives allow keeping diversity. All the subsets selected
using the Pareto front are evaluated during a second step called the wrapper step. During
this step, we prefer a stability criterion to select the final subsets instead of raw performances
regarding one classifier, in order to keep performances and independency between subsets and
classifiers. Indeed, we are looking for diversified subsets in the filter step in order to have
different kinds of solutions to evaluate during the wrapper step to increase the probability to
reach stable ones. In this way, the building of the Pareto front seems to be the more appropriate
choice because the subsets are selected regarding two different quality criterions.

4.2 Criterion and Diversity
The second stage of some previous approaches maintains a kind of diversity by the crossover
step and the mutation step of a GA. On the other hand, the selection of the first pool of features
by the filter step is done using a single criterion which restricts the explored subsets. Indeed,
the evaluation of the subsets is done in a single way which leads to reject subsets having good
properties according to another criterion. This is particularly the case for single criterions which
are composed of multiple parts (mRMR for example, composed of Redundancy and Relevance).
In this context, solution having very low redundancy or very high relevance could be rejected by
the selection process if the resulting aggregation function has a low evaluation.To increase the
diversity of the selected subsets our filter step explores the space in a multi-objective way with
two quality objectives and a complexity objective.

The evaluation of the quality is based on the Mutual Information (MI) to separately measure
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the Dependency (D) and Redundancy (R) of the subsets. The theoretical interest for Mutual
Information has been proved in [40]. These two criterions measure both the individual quality
of the selected features and the quality of the subset. The separate evaluation of these two
measures (contrary to [40]) is important because a relevant subset is not necessarily a subset
containing only significant attributes taken alone. Indeed the relevance of a subset may be due
to combinations of features. Fig. 1([3]) illustrates the well known case of two features with no
power of discrimination used alone, while combined they separate the two classes optimally.

�

�
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����������
������

Figure 1. Combination of features

5. Formalism and computation
In this section we give the formulation of the criterions and how to compute them. Then, we
present the multi-objective aspect of the method.

5.1 Criterions based on mutual information and complexity
The mutual information is considered to be a good indicator to study the dependency between a
feature and the classification and the redundancy between random features.

Mutual Information
Let X and Y be two random variables with discrete probability laws. The Mutual Information
(MI) I(X ;Y ) is defined by P(X ), P(Y ) and P(X ,Y ).

I(X ;Y )= ∑
y∈ΩY

∑
x∈ΩX

P(x, y) · log
P(x, y)

(P(x) ·P(y)
. (5.1)

with ΩX and ΩY the sample spaces of X and Y respectively.
When X and Y are dependent, I(X ;Y ) is high. I(X ;Y ) is equal to zero when X and Y are

independent.

Mutual Information estimation
The estimation of the MI is easy for discrete variables because joint probabilities are estimated
by counting the representative samples of each variable [58]. When at least one variable is
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continuous the MI is not easily computable and hardly depends on the way to estimate the
probability density function. Kwak et al. [32] propose to use the Parzenwindow (5.2) to estimate
probability density function and to approximate I(X ;Y ):

p̂(x)= 1
N

N∑
i=1
δ(x− x(i),h) (5.2)

where δ(·) represents the Parzenwindow which is here a Gaussian kernel ([39], [40]). x(i) is the
ith sample, N is the number of samples and his the width of the window. Parzen [39] shows
that if δ(·) and hare correctly chosen p̂(x) converges to p(x) when N increases [40].

Selection criterion definition
For each subset of features, we define the relevance expressed by the Dependency (D) which is
the average MI between the variables of S(X i) taken separately and the class of the samples
modeled by a discrete random variable called c with sample space equal to the class labels:

DS = 1
|S|

∑
X i∈S

I(X i; c) (5.3)

I(X i; c) represents the MI between a variable and the classes. It translates how X i is useful to
describe the classes.

The Dependency has to be maximized. However in order to have a homogenous expression
of the objective we prefer to express the opposite of the Dependency (−D) to minimize each
criterion.

The feature selection using only D is not optimal because of redundancy between the
variables [2]. Different ways exist to measure the redundancy and we use the one expressed in
[40]. It is based on the computation of the average MI between two variables (X i; X j)i, j=1,...,mi 6= j

belonging to the same subset Shaving m variables.

RS = 1
|s|2

∑
X i ,X j∈S

I(X i; X j) (5.4)

The redundancy must be minimized
These criterions are treated separately contrary to [40] and [2]. In these works, the criterions
are combined to produce the mRMR (minimal-redondance-maximale-pertinence)criterions
(ex. maxS(DS − RS) or maxS(DS/RS)). These mono-objective criterions didn’t ensure the
simultaneous convergence of criterions (5.3) and (5.4) to their optimal value but lead to a
trade-off between them.

The third criterion is the subset cardinality (L) which must be minimized.

5.2 Multi-objective optimization and Pareto set
The goal of a multi-objective optimization is to improve several criterions. When these criterions
have opposite behaviors considering the research of a solution, we necessarily have to degrade
at least one criterion to improve another one. This leads to different kind of solutions which are
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not necessarily comparable. If we don’t want to make a choice between too different solutions
(for example, between a cheap but slow car and an expensive but fast one) we must keep all
solutions being better than any others on at least one criterion. This leads to the notion of
domination which is essential to ensure diversity in the final set of subsets.

Without loss of generality, we illustrate this notion in our particular case.

Following the previous section, each subset is evaluated with three values ( f1, f2, f3) =
(−D,R,L).

• A subset S dominates a subset S2 according to f i if f i(S)< f i(S2), i = 1,2, or 3.

• A subset S dominates a subset S2 if i f i(S)≤ f i(S2) and ∃| f i(S)< f i(S2).

• A subset S is not dominated if Ø S2|S2 dominates S (ØS2|i f i(S2)≤ f i(S), ∃ f i(S2)< f i(S)).

• The set of all non dominated subsets is called the Pareto set.

Since our objective is to minimizeeach criterion the Pareto front follows the template in Fig. 2.
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Figure 2. Pareto Front Template

The third criterion, which represents the complexity of the subset through its cardinality,
allows keeping subsets with different size (for low number of features the redundancy may be
better and for high number of features the dependency may be better). Nevertheless, even if
we have one Pareto front for each possible subset size, there is no certainty to obtain at least
one subset for each possible size. This could be an inconvenient for some applications. In such
condition, the exploration step can deal with only the quality criterions and each intermediate
Pareto front (corresponding to a specific size) could be kept. This approach called Multi Pareto
Front (MF) is detailed in the next paragraph.

Finally to improve the visual interpretation of the Pareto solutions for the three Objectives
(3O) approach, we project the 3D Pareto set (−D,R, N) into the (−D,R) plan and we represent
one curve per subset size (Fig. 3). This representation is the same as in the 2D Multi Front
(Fig. 2) but is not obtained in the same way. We can build a 3O front from the 2O Multi-Front
by computing the non dominated solutions in a 3O approach starting with the 2OMF subsets.
The 2OMF will keep more subsets and all 3O subsets are included in the 2OMF subsets.
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�

�

�

Figure 3. 3D and 2D representation of Pareto front

5.3 Filter exploration method
For any optimization problem, a unique Pareto set exists for a given data set and the considered
criterions. In a muti-objective context, an exhaustive search, or an algorithm having asymptotic
convergence properties such as Genetic algorithm ([18], [56]), is classically required to find
this set. Both are time consuming and sometimes too slow to reach the optimal Pareto set in
a reasonable time. In practice, people build a sub-optimal Pareto front which is the Pareto
front computed over the visited solutions. One of the main qualities of a search method is then
its ability to provide solutions close to the ones of the optimal Pareto front. Our filter search
method joins this way and has been developed to approach the building of the optimal Pareto
front.

The filter step uses a sequential forward search to explore the subset space adopting the
following algorithm:

• Let F = {Fi|i ∈ [1, M]} be the complete set of features.

• We start with all possible pairs of features V2 = {(Fi,F j)|i ∈ [1, M], j ∈ [1, M], i 6= j}. Indeed,
we don’t initialize the method with a unique feature having the better individual quality
as in [40] because the redundancy requires at least two features and we want to keep
diversity in order to solve the problem illustrated Fig. 1.

• Each subset Sis evaluated with (−D(S),R(S), N(S)= 2) criterions and the non dominated
subsets are preserved, and noted ND2 . We denote Fr2 the Pareto front at iteration 2
(Fr2 = ND2).

• At iteration k, NDk represents the non dominated subsets of size k (k > 2) and Frk is
the global Pareto Front (Frk =⋃k

i=2 ND i).

• We build Vk+1 by adding to the subsets of NDk one new feature taken within the
remaining features: Vk+1 = {(S ∪ Fi)|S ∈ NDk,Fi ∈ F \ S}. Each subset S in Vk+1 is
then evaluated with (−D(S),R(S), N(S)= k+1).
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• We build NDk+1 by retaining the non dominated subsets of size k+1 within Ek+1 =
Vk+1 ∪Frk . We note that NDk+1 ⊆ Vk+1 . This step is required because some subsets of
Vk+1 can be dominated by subsets of Frk (the opposite is not possible because each subset
in Vk+1 is greater than each subset in Frk ).

• The algorithm ends if NDk+1 is empty (Frk+1 = Frk) or k = M . We denote m∗ the value
of k at the end of the algorithm.

There turned subsets are the ones belonging to Frm∗ . This algorithm is called 3O.
We can note that Frk ⊆ Frk+1 . Indeed, subsets of Vk+1 could not dominate subsets of Frk

because these last ones have a lower size: S1 ∈ Frk , N(S1)≤ k, S2 ∈Vk+1 , N(S2)= k+1.
In this algorithm, subsets are deleted from the Pareto front as soon as they are dominated

by a new subset. As mentioned earlier, this could lead to the deletion of all subsets of a given
cardinality. If we want to maintain a pool of subsets for each size, we can adapt the algorithm
in the following way:

• The subsets S are evaluated with only (−D(S),R(S)) at Step 3 and 5

• Ek+1 =Vk+1 at Step 6

• The algorithm ends if k = M at Step 7

The new algorithm is called Two Objectives Multi-Front Algorithm (2OMF) and the returned
set of subsets is FrM =⋃M

i=1 ND i .
We can observe that V 3O

k 6=V 2OMF
k which implies that ND3O

k 6= ND2OMF
k and Fr3O

m∗ 6= Fr2OMF
M

because the domination relation is computed over different subsets (different expression of
Ek+1).

A final step can be added to the 2OMF algorithm. This final step consists on computing the
Pareto set of FrM in a three-objective way (−D(S),R(S), N(S)). The corresponding algorithm is
called 2OMF-3O.

5.4 Wrapper step and stability criterion
The wrapper step is used to rank the selected subsets and to select a subset considering the
application. For this step, the exploration space has been sufficiently reduced during the filter
step to allow an exhaustive evaluation of the remaining subsets NDF . A large majority of
wrapper approaches deals with Feature Selection in terms of performances regarding a classifier,
but few studies select subsets for their stability. Nevertheless, the stability is a topic of interest
in studies dealing with high dimensional data and a small number of samples ([20], [45]).
Moreover, wrapper methods can lead to good classification accuracy for a specific classifier
but with poor generalization properties ([28], [40]) (i.e. over-fitting for one classifier and low
performances for another one [44]).

The stability is defined by Somol as being the quality of a subset to have the same
performances with different training sets ([28], [53], [51]). Different stability indices can
be used [51] such as Hamming distance, correlation coefficients, Tanimoto distance, consistency
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index (simple, weighted or relative weighted) and Shannon entropy. In [31] and, the stability is
measured by running a wrapper scheme several times with a unique classifier and different
learning sets (no cross-validation). The stability is based on an evaluation of the similarity
between subsets returned by different runs. If the index is high the subset is selected. Otherwise
the selection is based on the classification rate evaluation.

In this paper, we investigate another kind of stability between different classifiers (each
trained and evaluated with a cross-validation process). According [20] to this kind of stability
has been neglected in the literature. A subset is stable regarding classifiers if the performances
obtained with different classifiers are close. The easiest way to compute the stability of a
subset is to compute the amplitude of the classification rates obtained with several classifiers
K-Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA), Mahalanobis (Mah), Naive
Bayes (NB), Simple Vector Machine (SVM) and Probabilistic Neural Network (PNN):

A(S)=max
c∈Cl

{Rc(S)}−min
c∈Cl

{Rc(S)} (5.5)

Where S is the subset, Cl a set of classifiers and Rc(S) the classification rate obtained with the
classifier c applied on the subset S .

Finally, we identify the stable and successful subsets. Therefore, the selection of the
interesting subsets is done in a two objectives way by maximizing the mean classification rate
(M(S)) and by minimizing the amplitude (A(S)).

M(S)=mean
c∈Cl

{Rc(S)} (5.6)

6. Experiment on benchmarks
The experimentations are made in three steps. During the first step, our aim is to choose the
best method between 2OMF, 3O and 2OMF-3O methods. The comparison is done by means
of the diversity of the subsets, the computation time of the filter step, and the stability of the
subsets after wrapper step. The second step presents a more detailed analysis of the best
method, the 2OMF. Then the third step compares the 2OMF method with two other existing
feature selection methods: mRMR [40] and FSDD [33]. Both are using filter criterions to select
the features and then they evaluate the unique returned solution using classifiers.We choose
mRMR method because it uses the same criterions as 2OMF but in a mono-objective way. We
choose FSDD because it is a fast algorithm which converges to the optimal solution regarding a
distance criterion. In both cases, it is interesting to project the solutions obtained with different
filter steps in the space (performance, stability) of the wrapper step and to compare them with
our pool of solutions. The comparison is done by means of the size and the stability of the
subsets returned by each method and also the computational time of each method.

Each step uses UCI databases for validation and more particularly iris, TAE, abalone,
PimaIndiansDiabetes, wineRed, wineWhite, wine, imgSeg, ionosphere and landSat databases
containing 4, 5, 7, 8, 11, 11, 13, 18, 34 and 36 features respectively. Figure 4 to Figure 11
present some of the obtained results.

The stability is computed after applying KNN, LDA, Mah, NB, and PNN classifiers.
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6.1 Comparison between 2OMF, 3O and 2OMF-3O
We compare the performances of the 3 algorithms. Figure 4 illustrates the Pareto fronts
of each method in the (performance, stability) space for the wine, imgSeg, ionosphere and
landsatdatabases. Our analysis focuses on these databases because they have the largest
number of features. Therefore, they are more representative of the studied problem. However,
the same observations can be done on the other databases. We also compare the subsets of the
different Pareto fronts to the complete set regarding the stability of the classification.
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Figure 4. Wrapper Stability front comparison between 2OMF, 3O and 2OMF-3O

Figure 4 shows that the 2OMF Pareto front (green solid line) is at least equivalent and
often better than the 3O (blue dotted line) and 2OMF-3O (black dashed line) Pareto fronts.
Moreover, Figure 4 shows that the complete set of features (purple star in the figure) never
dominates a subset of the 2OMF Pareto front. It is also often the case for the 3O (blue dotted
line) and 2OMF-3O (black dashed line) fronts: curves often overlap or are very close for these
two methods. In Figure 4(a) all subsets in the fronts dominate the complete set. In Figure 4(b),
4(c) and 4(d) the subsets within the red dashed ellipse dominate the complete set. It means that
besides being not dominated, solutions from 2OMF front have better stability properties than
the complete set regarding both objectives (mean rate and amplitude). Moreover, the complete
set is always dominated by at least one subset of the 2OMF Pareto front. This first result is of
interest because it shows subsets having better performances than the complete set although
having a lower number of features. We can also conclude from this first result that 2OMF is a
better search method than 3O and 2OMF-3O.

In order to explain the differences between the three methods we analyze the composition of
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the subsets contained in the Pareto fronts returned by the filter step. Figure 5(a), 5(b) and 5(c)
show the histogram of the selected features in the subsets of the Pareto front returned by the
three approaches. We note that the global shape of the histograms is the same for the three
methods. However we observe a more homogenous histogram in the case of 2OMF with all
features selected in the different subsets. This is not the case for the two other methods where
some features totally disappear (feature 6 and 8 for example) and where the gap between the
most represented and least represented features is proportionally larger (features number 10
and 11 for example). Moreover, all subset sizes are not retained with 3O and 2OMF-3O (size
< 10) (Figure 6)instead of 2OMF which includes all subset sizes.
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Figure 5. Comparison of the selected features after Filter step with 2OMF, 3O, 2OMF-3O for imgSeg
database
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Figure 6. Subset sizes distribution after Filter step with 2OMF, 3O, 2OMF-3O for imgSeg database

Figure 6 shows that 2OMF returns more subsets than the other methods. In order to give
an information about their composition, Figure 7 displays the Pareto front in three dimension
(−D,R, N) for each algorithm. Let us notice that the Pareto fronts have the same shape for the
three algorithms. Nevertheless the one of 2OMF contains more subsets and more subset sizes.
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Figure 7. 3D Pareto fronts representation of filter step for imgSeg database

Figure 8 shows the evolution of the Pareto front during the filter step ((−D,R) space) for
wineWhite database for subset sizes from 4 to 10. Each line represents the Pareto front for a
given subset size and each column for a given algorithm. We can see that 2OMF-3O and 3O
subsets are very close and by construction 2OMF-3O subsets are a subpart of the 2OMF subsets.
Moreover, when the size of the subsets increases the number of subsets exclusively explored
by 2OMF increases too. In the same time the number of subsets within 3O and 2OMF-3O
Pareto fronts decreases until 0 for a subset size 10. The same observation can be done for the
other databases. A further analysis of the selected subsets by the three methods shows that
the Pareto subsets obtained with 3O and 2OMF-3O are statistically dominated by at least one
2OMF subset: 98.7% of 3O and 100% of 2OMF-3O subsets are dominated and only 0.1% of 3O
subsets dominate one 2OMF subset.

Finally the computation time, is linked to the number of explored subsets during the search
procedure and 2OMF-3O is the more time consuming. Indeed, the 2OMF-3O is not efficient
because it requires running the 2OMF algorithm and after applying a 3O reduction. 2OMF
is around three times longer than 3O method. Nevertheless, it is not a limiting factor for our
application (see section ??).

The 2OMF approach gives better results because the filter step returns more subsets and
more diversified ones (size and composition). The reason is that the systematic exploration of
every subset size with the Multi-Front technique avoids falling into a local optimum leading
to exclude some features. Indeed, during the filter step the 3O algorithm stops whenever no
new subset (build from the current Pareto front by adding one feature) improves one of the
objectives (D or R). For example, in the case of imgSeg database, the 3O algorithm ends with
a maximum subset size of 9 and the 2OMF-3O ends for subset size equal to 10 for imgSeg
database (Figure 6). Let us recall that the gain on one objective is obtained when adding several
features in some cases (Figure 1).

Therefore, the 3O method can be preferred if computation time reduction is necessary or
can be used to underline useful features. Elsewhere, 2OMF can be recommended. Indeed, the
lack of some kinds of subsets (composition and size) can be a drawback in the second step of the
algorithm. For these reasons, we choose to retain the 2OMF algorithm in the rest of the paper.
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Figure 8. filter Pareto fronts in (−D,R) space from size 4 to 10 for wineWhite (11 features) database
during 2OMF, 3O and 2OMF-3O

6.2 2OMF method analysis
We now analyze more precisely the results of the 2OMF algorithm after the second step of the
algorithm. This step is based on the wrapper approach which sorts and then selects among the
retained subsets during the filter step. We recall that the used criterion is the stability(in a two
objectives way) when different classifiers are applied. In this space (mean rate, amplitude) we
compute a new Pareto front composed of several solutions and we focus on them to select the
most interesting ones.

Figure 9 displays information about the stability of the selected subsets after filter step
(green points) for landSat database. As showed in Figure 9(b) (which is a zoomed part of the
Figure 9(a)), a lot of subsets dominates the complete set (purple star in the figure) even if they
are not in the Pareto front: these subsets are within the red rectangle. All of these subsets have
higher mean classification rate and lower amplitude than the complete set. They can also be
interesting because some of them h ave lower number of features than the one in the Pareto
Front and a quite good classification stability as it is better than the complete set stability. For
the studied database, there are 21 subsets in the front (6 dominating complete set) and 73
subsets that dominate the complete set.
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Figure 9. Stability analysis for landSat database

Figure 9(c) shows the histogram of the selected features computed using all subsets of the
2OMF wrapper Pareto Front. We note that quite every features are represented. In the same
way Figure 9(d) gives the repartition of the size of the Pareto subsets in order to illustrate the
diversity of the solutions. Landsat database is composed of 36 features and some of the subsets
in the Pareto front are composed of less than 10 features. A further analysis of the subset sizes
is given in the next section.

The histograms in Figure 10show the size repartition of the subsets that dominate the
complete set for wine, imgSeg, ionosphere and landSat databases. We remark that a lot of
subsets have a size between 40% and 70% of the complete set size. This is an interesting result
which proves that a controlled reduction of the number of features allows an improvement of
the classification rate independently of the classifiers (which is in connection with the expected
stability of the selected subsets). We also observe that, the subsets with the lowest size are
obtained for non Pareto subsets (see Figure 10(a), 10(c) and 10(d)). This leads to a proposition of
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modification of the second step of the algorithm. The final set of subsets will be composed of all
subsets which dominate the complete set regarding stability and not only the Pareto subsets.
The choice among these subsets is then made by the user according to his own criterion (lowest
number of features, best mean rate, etc.).

�� �

� �
�����/&��������! � � � � � � � �"�3%�3��/=��������! �

�

� � �

� �"���!	4�����&>��������! � � � � � �� �����!����&?��������! �

3������('�5�2������
��������������
�������������������������

Figure 10. Histogram of the dominant subsets size for 2OMF

6.3 Comparison between 2OMF, mRMR and FSDD
In order to evaluate the performances of our algorithm we compare it with two well known
feature selection methods: mRMR and FSDD. Figure 11 displays the visited subsets using
mRMR algorithm (blue) with their corresponding Pareto front (blue line) and using FSDD
algorithm (black) with their corresponding Pareto front (black line). We observe that these
subsets are not Pareto optimal when compared to the 2OMF subsets (green points). Moreover,
few of them dominate the complete subset.

The same observation can be done for most of the databases. Indeed, in few databases
we observe an mRMR subset that dominates the complete subset. A subset of mRMR and a
subset of FSDD fall into the Pareto set only for TAE database and for iris. Figure 11 shows a
comparison between the Pareto Fronts obtained with mRMR (blue), FSDD (black) and 2OMF
(green) algorithms for different databases. The size of the corresponding subsets is also displayed
near the subset as well as the complete set (purple star). We can observe that the subset size
follows high variations: between 2 and 33 for the 2OMF Pareto front for ionosphere database
and between 4 and 29 for the 2OMF Pareto front of the landSat database for example. The
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mean classification rate is also varying in a wide range: for ionosphere database the mean rate
is about 75.5% for a two features subset, 86% for a 5 features subset and 84% for a 10 features
subset; for the landSat database the mean rate is about 82.5% for a 4 features subset and 85.5%
for a 28 features subset.

We now focus on the good classification rate obtained for some interesting subsets. The
Table 1 shows subsets obtained with 2OMF, mRMR and FSDD methods. Information about the
Pareto optimality is also given (PO =Y in the table). In addition to this, we present whether a
subset dominates the complete set (Do =Y ). The mRMR and FSDD subsets are chosen among
the visited ones according to their mean rate value.

Table 1. Good classification rate and stability of interesting subsets (Bold faces indicate the best result(s))

Classifiers rate

Db Method Subset Size Do. PO Mean Var. KNN LDA Mah NB PNN

Wine Complete set [1-13] 13 N 87.7 29.5 70.4 100 92.0 96.6 79.5

Best mRMR [1 7 10 11 1213] 6 Y N 88.63 25.0 73.86 98.86 97.72 97.7 75

Best FSDD [1 6 7 10 12 13] 6 Y N 88.18 25.0 73.86 98.86 97.72 95.4 75.0

2OMF [1 7 11] 3 Y Y 96.2 4.5 97.7 93.2 96.6 97.7 95.4

[1, 2, 6, 7, 8, 11, 12] 7 Y Y 94.5 2.2 95.5 93.2 93.2 95.5 95.5

[1 7] 2 Y N 94.3 5.6 96.6 90.9 94.3 95.5 94.3

imgSeg Complete set [1-18] 18 N 92.3 8.2 95.5 91.1 NA 87.3 95.3

Best mRMR [. . . ] 16 N N 91.57 7.9 94.9 90.4 NA 87 94

Best FSDD [. . . ] 14 Y N 92.46 7.87 95.32 91.60 NA 87.5 95.41

2OMF [2 10 12 13 15 17 18] 7 Y Y 93.2 6.5 96.1 90.9 NA 89.5 96.0

[2 9 10 12 13 15 17 18] 8 Y Y 93.1 5.9 96.0 90.7 NA 90.0 95.6

[2 5 10 11 12 13 15 17 18] 9 Y Y 92.7 5.5 95.2 90.3 NA 89.8 95.4

ionoSphere Complete Set [1-34] 34 N 76.23 29.7 87.1 NA NA 84.2 57.4

Best mRMR [1 3 4 5 14] 5 Y N 83.80 30 92.85 NA NA 94.3 64.28

BestFSDD [1 3 5 7 9] 5 Y N 82.38 25.71 91.42 NA NA 90 65.71

2OMF [1 3 4 5 6 7 8 14 15 28] 10 Y Y 83.80 28.57 94.28 NA NA 91.4 65.71

[1 3 4 5 7 ] 5 Y Y 85.71 32.85 97.14 NA NA 97.7 64.28

landSat Complete Set [1-36] 36 N 84.8 12 89.4 83.9 81.6 78.5 90.5

Best mRMR [. . . ] 27 N N 84.58 11.5 89.85 83.00 80.15 79.2 90.7

Best FSDD [. . . ] 28 N N 84.73 11.35 89.7 83.4 80.8 79.2 90.55

2OMF [. . . ] 29 Y Y 85.0 11.4 89.8 83.7 82.1 78.9 90.3

[. . . ] 31 Y Y 85.1 11.9 89.6 83.7 83.0 78.7 90.6

[. . . ] 27 Y N 84.85 11.15 89.9 83.4 81.4 79.2 90.35

[. . . ] 25 Y N 84.9 11.9 89.3 83.2 82.7 78.7 90.6

[. . . ] 26 Y N 84.8 11.7 89.6 83.2 82.3 78.6 90.6

[5 13 18 20 21 29 34] 7 N Y 83.13 10.7 84.95 82.45 83.15 72.2 87.9
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Figure 11. Comparison of the stability Pareto Fronts for 2OMF (green), mRMR (blue) and FSDD (black)
algorithms
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All the displayed subsets obtained with the 2OMF method are interesting because they
have a low number of features and a better stability than the complete set. Nevertheless, some
subsets have lowest number of features and others highest classification rates. For example, for
the wine database, a subset with two features (features number 2 and 7) have a higher mean
rate and a lower amplitude than the complete set having 13 features. Moreover, it has a higher
classification rates for 4 classifiers over 5. In the same way, for imgSeg database the number of
features is divided by 2 with the 2OMF method.

Let us consider now the methods from the literature. For landSat database none of the
visited subsets dominate the complete set for both mRMR and FSDD. Moreover, stable and
successful subsets obtained with FSDD have a higher number of features than the ones obtained
with 2OMF. Only one stable subset having low number of features is obtained with mRMR (8
features). However, it is dominated by the subset returned by 2OMF which has seven features
(last line in the table). We always found a subset among 2OMF subsets having a lower number
of features, a higher classification mean rate and a lower classification amplitude than the best
subsets returned by mRMR and FSD. An exception exists for TAE (Figure 11): two different
subsets of size three are returned by 2OMF and mRMR without domination relation between
them (higher mean rate for 2OMF and lower amplitude for mRMR).

6.4 Computation complexity and computation time
In order to complete the previous comparison between 2OMF, mRMR and FSDDwe study
the computation complexity of the proposed method and we give some computation time
measurements. For both filter and wrapper steps, we evaluate the computation complexity by
counting the number of subsets.

For filter step the number of explored subsets is linked to the number of non dominated
subsets at each iteration (NDk). This value depends on the data and on the iteration. However,
it can be estimated using simulations and verified experimentally using UCI databases.

In order to estimate the mean complexity of the filter step we define T the maximum number
of subsets in NDk . The computation complexity is then proportional to

M(M−1)+
M∑

k=3
|NDk−1|(M−k)≤ M(M−1)+

M∑
k=3

T(M−k)= M(M−1)+T
M∑

k=3
(M−k)

= M(M−1)+T
M−3∑
k=1

k

= M(M−1)+T
(M−3)(M−2)

2

=
(
1+ T

2

)
M2 −

(
1+ 5T

2

)
M+ 5

2
T

=O
(

T
2

M2
)

(6.1)
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Figure 12. Pareto Front size and total number of evaluations

After tests on UCI databases (Figure 12 we observe that the Pareto front reaches a maximum
size around T = 50. For large number of features we can limit the number of Non Dominated
subsets at each iteration with Niching techniques [9] when the computation time must be
reduced. Moreover, the computation complexity of the algorithm can also be decreased to

O
(

T
2

K M
)

by limiting the cardinality of subsets at a given value K < M .

We run the 2OMF algorithm on simulated data to experimentally and statistically verify
the computation complexity. Figure 13(a) shows the evolution of the total number of subsets
explored during the filter step. This value depends on the size of the input data, and also

the projection of f (M) = T
2

M2 function. We also display the number of explored subsets for
real databases. Figure 13(a) shows that the model proposed in equation (6.1) is close to the
complexity computed on simulated and real case data.

The wrapper complexity is directly linked to the size of FrM : FrM = ∑M
k=1 Dk ≈ MT =

O(TM). The complexity decreases to O(TK) when we stop the algorithm for a given number of
features K . Figure 13(b) shows the complexity corresponding to simulated and real case data.
The curves provide a visual validation of the proposed evaluation of the complexity.
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Figure 13. Filter and Wrapper computation complexity
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The filter step requires the exploration of many more subsets than the wrapper step but
the evaluation of one subset during the filter step is less time consuming than during wrapper
step. Indeed, the computation of the criterions during the wrapper step requires running 5
classifiers. Let us notice that every MI (equation (5.1)) useful for Redundancy and Dependency
computation can be computed just one time: MI between each pair of features (I(X i; X j)) and
MI between each feature and the classes (I(X i; c)). Then D and R computation (equation (5.3)
and (5.4)) is reduced to the sum of pre-calculated values and is very fast.

Table 2 shows the computation time and complexity of the different algorithms used in the
experiments. FSDD and mRMR are faster than 2OMF. However, 2OMF returns more stable
subsets while maintaining an acceptable computation time for for non real time applications
which cover a large part of the applications (storage, pre-treatment, etc.).

iris, TAE, abalone, PimaIndiansDiabetes, wineRed, wineWhite, wine, imgSeg, ionosphere
and landSat databases containing 4, 5, 7, 8, 11, 11, 13, 18, 34 and 36

Table 2. Complexity and Computation time comparison (on core2 Duo 2.4 GHz)

2OMF

FSDD mRMR Filter Wrapper

Database Nb subsets Times Nb subsets Times Nb subsets Times Nb subsets Times

Abalone 7 < 1s 21 < 1s 113 <1s 20 ∼5mn

PimaIndiansDiabetes 8 < 1s 28 < 1s 118 <1s 16 ∼5mn

wineRed 11 < 1s 55 < 1s 522 <1s 76 ∼25 mn

wineWhite 11 < 1s 55 < 1s 480 <1s 65 ∼20 mn

Wine 13 < 1s 78 < 1s 660 <1s 78 ∼25 mn

imgSeg 18 < 1s 153 ∼1s 4066 <1s 413 ∼2H10mn

Ionosphere 34 < 1s 561 ∼4s 5581 <1s 291 ∼1H25mn

Landsat 36 < 1s 630 ∼5s 13833 ∼1s 712 ∼3H30mn

7. Conclusion
This paper presents a two steps algorithm for feature selection. The algorithm begins with a
filter step based on a forward approach. The forward approach is applied in order to quickly
select a first pool of subsets in a Multi-Objectives and Multi-Fronts way (2OMF). The subsets
are evaluated using the Dependency (D) and the Redundancy (R) of the features (2O for two
objectives). One front is kept for each subset size which produces Multi-Fronts (MF). Then
a second step is applied to measure the performances of the subsets. This step is based on a
wrapper approach with the use of several classifiers (K NN , LDA , Mah, NB, PNN ). Then the
selection of the interesting subsets is performed using the stability of the subsets. The stability
is evaluated with the mean and amplitude of the classification rates. From our experimentations,
it is observed that the interesting subsets dominate the complete set regarding both objectives.
The use of the stability to select the subsets leads to robust results which are very interesting
for some applications such as in biology where the stability of the subsets is more important
than its raw classification rate. The wrapper step is required because some subsets of the filter
Pareto front could have a higher classification rate than the complete set for a given classifiers
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but not for another one, as shown in the paper. A selection of features only based on a filter
method does not ensure that the selected subset will improve classification rates for a large set
of classifiers.

The results are very convincing for all tested databases. The subsets obtained after applying
our algorithm have lower number of features and better classification performances compare to
the complete set of features. Moreover, the diversity of the final pool of subsets allows selecting
a subset adapted to a specific application (good classification expected or reduction of a high
number of features). We also compared the proposed algorithm with two feature-selection
methods (mRMR and FSDD). It is observed that our method outperforms the other tested
methods in almost all cases.

One of the major goals of this research is to reduce the computation time of classification
task. This goal is achieved by selecting a set of feature subsets returned by the filter step. The
selection is made according to the composition of the subsets in order to keep a diversified
pool of subsets. In future works, we will use techniques inspired from the one used in Multi
Objectives Genetic Algorithms to select diversified non dominated offspring among the resulting
population after the crossover operator. This technique is called NPGA (Niched Pareto Genetic
Algorithm [9]). We will also compare the Redundancy and Relevance criterions with other ones
in the filter step and add more classifiers in the wrapper step to select more robust subsets.
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