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1. Introduction

The concept of complex valued metric space was introduced by Azam et al. [6], which is the
generalization of the classical metric space and proved some fixed point results for a pair of
mappings for contractive condition satisfying a rational expression.

Subsequently, many authors have obtained fixed point and common fixed points of set
mappings in complex valued metric spaces (see for instance [1,.3,4,7-9,(14, 1719, 21]).

In 2013, Rao et al. [13] introduced the concept of complex valued b-metric space, which
was general than the well known complex valued metric space. After that, many authors have
generalize and extend the results in complex valued b-metric spaces (see for instance [10-H13]).

In 2016, Ughade et al. [20], introduce the notation of A;-metric space and proved some fixed
point theorems under contraction and expansion type condition.
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Recently, in 2019, Singh and Singh [15] introduced the concept of complex valued Aj-metric
space and proved fixed point theorem, and also in 2020, he is proved common fixed point
for two self mappings in rational expression and complex valued Aj,-metric spaces, which is
generalization of the results giving by Mukheimer [11].

In this paper, we describe and extend common fixed point theorem in complex valued
Ap-metric space. Our results generalized the results of Singh and Singh [[15].

2. Basic Concept and Mathematical Preliminary

In this section, we recall some properties of A-metric space, A;-metric space, complex valued
metric space, complex valued b-metric space and complex valued Aj-metric space.

Definition 2.1 ([2]). Let X be a nonempty set. A function A : X" —[0,00) is called an A-metric
on X if for any x;,a € X,i=1,2,3,---,n, the following conditions hold:
(A1) A(x1,x2,%3, " ,2X(n-1),%n) =0,
(A2) A(x1,%2,%3, " ,%(n—1),%n) =0 if and only if x1 =xg =x3 =+ = -1 = Xy,
(A3) A(x1,%2,%3,  ,%(n-1),%n) < A(x1,%1,%1,+,(X1)(n-1),@)
+ A (xg,%2,%2, ,(x2)(n-1),a)
+A(x3,x3,%3,,(X3)(n-1),@)

+ A (X(0-1) X(n-1) X(n—-1)> " * » E(n-1))(n-1),@)
+A(xn:xnaxna e ,(xn)(n—l),a)-

The pair (X, A) is called an A-metric space.

Definition 2.2 ([20]). Let X be a nonempty set and b = 1 be a given number. A function
A : X" —[0,00) is called an Ap-metric on X if for any x;, a € X, i=1,2,3,---,n, the following
conditions hold:
(Apl) A(x1,%2,%3," " ,%n-1,%n) 20,
(Ap2) A(x1,x9,x3,  ,xp—1,4p)=0ifand only if x; =x9=x3=---=x,-1 =%,
(Ap3) A(x1,x2,%3, ** ,Xn-1,%n) < b[A(x1,21,%1, ** ,(X1)(n-1),@)

+A(x2,x2,x2, v ,(xz)(n_l),a)

+A(xg,x3,x3,,(x3)(n-1), )

+A(Xn-1,%0-1,%n-1," " » (X(n-1))(n-1), @)
+A(xn>xnaxn, ot >(xn)(n—1),a)] .
The pair (X,A) is called an A-metric space.

Remark 2.3. A;-metric space is more general than A-metric space. Moreover, A-metric space
is a special case of Ap-metric space with b =1.
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Example 2.4. Let X =[1,+00). Define A : X" — [0,00) by

n
2
Ap(x1,02,%3,* ,Xp-1,%n) = ) ) |%; — ]
1=1 i<y

forall x; € X,1=1,2,3,---,n.
Then (X,Ap) is an Ap-metric space with 6 =2 > 1.

The concept of complex valued metric space was initiated by Azam et al. [|6].

Let C be the set of complex numbers and z1,z9 € C. Define a partial order = on C as follows:
z1 S z9 if and only if Re(z1) <Re(z2) and Im(z;) < Im(zy).
It follows that z; = z9 if one of the following conditions are satisfied:
(C1) Re(z1) =Re(z9) and Im(z1) < Im(z9),
(C9) Re(z1) <Re(z9) and Im(z1) = Im(zg),
(C3) Re(z1) =Re(z9) and Im(z1) < Im(zs9),
(C4) Re(z1) <Re(zg2) and Im(z1) < Im(zg).
Particularly, we write z1 = z9 if 21 # 29 and one of |(C2)}, (Cs) and |(Cy)|is satisfied and we write
z1 2 z9 if only is satisfied. The following statements hold:
(1) Ifa,b € R with a < b, then az 3 bz forall 0 3z € C.

(2) If z1 S z9,then azy Zazg forall0<a€R.
3) Ifojzl :522, then |z1| < |z9].

(4) If 0 <z <z9, then |z1] <|z3].

(5) If21 fJZg and 29 <23, then 21 <23.

Definition 2.5 ([6]). Let X be a nonempty set. A function d : X x X — C is called a complex
valued metric on X if for all x,y,z € X, the following conditions are satisfied:

(1) 0 3 d(x,y) and d(x,y) =0 if and only if x = y,
(1) d(x,y)=d(y,x),
(i) d(x,y) Zd(x,z)+d(z,y).

The pair (X,d) is called a complex valued metric space.

Definition 2.6 ([[11]). Let X be a nonempty set and let s > 1. A function d : X x X — C is called
a complex valued b-metric on X if for all x,y,z € X, the following conditions are satisfied:

(1) 0 2d(x,y) and d(x,y) =0 if and only if x = y,
(i) d(x,y)=d(y,x),
(i) d(x,y) Zsld(x,z)+d(z,y)].

The pair (X,d) is called a complex valued b-metric space.

Definition 2.7 ([[15]). Let X be a nonempty set and b = 1 be a given real number. Suppose that
a mapping A : X" — C satisfies for all x;, a € X,1=1,2,3,--- ,n:
(CAbl) 0 :\<J A(x1>x27x37 toT )xn)7
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(CAR2) A(x1,x9,%3, ++,x,)=0x1=x9=x3="-=2%p,
(CAp3) Alx1,x2,x3, " ,%n) 3 b[Alx1,%1,%1, ,(x1)(n-1),@)
+A(xg,x2,%2, ,(x2)(n-1),@)
+ A(x3,x3,%3, " ,(X3)(n-1),@) + -~
+A(xn-1,%n-1,%n-1,"" ", (X(n-1))n-1,0)
+ Ay, Xn, X, ,(xn)(n_l),a)].
Then A is called a complex valued Ap-metric on X and the pair (X,A) is called a complex
valued Ap-metric space.

Example 2.8 ([15]). Let X =R and A : X" — C be such that
A(x11x27x37' ot ,xn) = (a + i,B)A*(xl)x2,x37 Tt 7xn),

where a, = 0 are constants and A, is an Ap-metric on X. Then A is a complex valued A-

metric on X. As a particular case, we have the following example of complex valued Aj-metric
n

on X. The mapping A : X — C defined by A(x1,x9,x3, - ,%,) =(1+1) ¥ Z.Ixi—le2 is a complex

i=1i<j

valued Ap-metric on X =R with b = 2.
Definition 2.9 ([|15]). A complex valued Ap-metric space (X, A) is said to be symmetric if

A(x1,21,%1, , (X1)(n-1),X2) = Ax2,%2,%2, -+ ,(x2)(n—1), X1)-

for all x1,x9€ X.

Definition 2.10 ([15]]). Let (X,A) be a complex valued Ap-metric space.

(i) A sequence {x,} in X is said to be complex valued A,-convergent to x if for every a € C
with 0 <a, there exists k£ € N such that A(xp,x,, -+ ,%,,x) <a or A(x,x, - ,x,x,) <a for
all p >k and is denoted by lim x, =x or x, — x as p — oo.
p—00
(ii) A sequence {x,} in X is called complex valued A;-Cauchy if for every a € C with 0 <a,
there exists £ € N such that A(x,,xp, -+ ,xp,%4) <a for each p,q = &.

(iii) If every complex valued Ap-Cauchy sequence is complex valued Ap-convergent in X, then
(X,A) is said to be complex valued Aj-complete.

Lemma 2.11 ([15]). Let (X,A) be a complex valued Ay-metric space and let {x,} be a sequence
in X. Then {x,} is complex valued Ay-convergent to x if and only if |A(xp,xp, -+ ,%p,x)| — 0 as
p —ooor |A(x,x, - ,x,x,)| — 0 as p — oo.

Lemma 2.12. Let (X,A) be a complex valued Ay-metric space and let {x,} be a sequence in
X. Then {xp} is complex valued Ay-Cauchy sequence if and only if |A(xp,%p, +,%p,%¢) — 0 as
p,q — 0.
Lemma 2.13. Let (X,A) be a complex valued Ay-metric space. Then

Ax,x,-+,x,5) SOA(Y,y, -+, ¥,%).
forall x,yeX.
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3. Main Results

Theorem 3.1. Let (X,A) be a complete complex valued Ay-metric space and f,g:X — X be any
two mapping satisfying

A(fxfx"",fx,gy)ﬁaA(x,x,“',y)- (31)

for all x,y € X where a € |0, b_12] Then f and g have a unique common fixed point in X.

Proof. Let xp € X be an arbitrary point and let {x;} in X be defined as

ok+1
Xop+1=faor =F""x

>

_ _ 2k+2
Xok+2 = 8%X2k+1 =8 X

for £=0,1,2,3,---.
Then, we show that the sequence {x;} is complex valued Aj;-Cauchy.
From (3.1), we have

A(X2p41,%2841," " , X2k +1,X2k+2) S A(fx2p, fX2p, -+, [ %21, 8Y2k+1)

0>

2 aA(xgp, %ok, X2k, Yok+1)

= a* Alxo,xo,+ %0, y1). (3.2)
Using[(CAp3) and (3.2), for &,/ e N with & <, we have
Alg, g, 0k, %) 3 (= DDA, Xk, , Xk, Xp11) + DA 41, X811, , Xk +1,X7)
S (n—DbLAE, Xp, Xk Xp+1) + D2 AR 11, Xp1 1,7, Xpr 1, Xpr) + 7
+ 02D A g, 3021, 00, %021, %0)]
S (n-1Dbak +b%2a L+ btk 2 4 b2V A (g, %0, -+, %0, 1)

J(m-DbafA+b2a+ba? +- + b2Vl P A(xg, x0, -+ , %0, %1)

—1)bak
3 %A(xo,xo,“' ,X0,%1). (3.3)
Thus, we obtain
(n—-1)(ba)
|A(.’)Ck,xk,' ot ,xkaxl)| = —2|A(.X'(),x(), Tt 7x07x1)|-
1-b%a
Since a € [0, biz) where b > 1, taking limit as &,! — oo, we have
(n—1)(ba)
|A(x01x05 e ,xO’xl)I =< WlA(xO’xOf o ’x()’xl)l - O

Therefore, |A(xg,x0,--,%0,%x1)| — 0 as k,l — co.
So, by Lemma 2.11] {xz} is a complex valued Ap-Cauchy sequence. Since (X,A) is complete,
there exist u € X such that the sequence {x3} is complex valued Aj-convergent to u.

Now, we show that u is fixed point of /. We have
A(fuyfu7 ,fu,u)j(n—l)bA(fu,fu, ,fu,x2k+2)+bA(u,u,--- au7x2k+2)
= (n_ 1)bA(fu’fu9 ’fuygx2k+1)+ bA(ua U, au7x2k+2)
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j (n - l)bA(u’u7 ot >u7x2k+l) + bA(u)ua T 7uax2k+2)'

= |A(fu,fu, - ,fu,u)|<(n-1blA(u,u, - ,u,xop+1)+blA(u,u, - ,u,x9p+2) — 0 as k — oo.
= |A(fu,fu, - ,fa,u)=0.
= fu=u.
= u is a fixed point of f.
Similarly, we can show that gu = u is the fixed point g.
Therefore, u is common fixed point of f and g i.e. fu=u = gu.
Finally, to show that the uniqueness of the common fixed point of / and g. Now, let v is another
common fixed point of f and g. Then, we have

Aw,u, - ,u,v)=Afu,fu,---,fu,gv)

2 aA(u,u, - ,u,v).

Hence

|A(u,u, - ,u,v)| <alAlu,u,---,u,v)|.

Since a € (0, b—12) ans b > 1, we must have

|A(u,u, - ,u,v)|=0
= u=v.

So u is the unique common fixed point of f and g. O

Corollary 3.2. Let (X,A) be a complete complex valued Ay-metric space and f,g:X — X be
any two mapping for some positive constant k

A(f2k+1x,f2k+1x,--- ,f2k+lx,g2k+2y) SaAx,x, - ,x,y),

for all x,y € X where a € (0, biz), then f and g have a unique common fixed point in X.

From Theoremthat f2k+1x has a unique fixed point » in X. But f24*1(fu) = f(f2k+1u) =
fu. So, fu is also fixed point of f2**1. Hence fu = u is a fixed point of /. Since the fixed point
of f is also fixed point of f2#*1, the fixed point of f is unique. Similarly it can be established
that gu =u. Then fu =u = gu. Thus u is common fixed point of f and g.

Theorem 3.3. Let (X,A) be a complete complex valued Ay-metric space and let f,g:X — X be
any two mapping satisfying the following condition

A(fx7fx7 7fx’gy)§ a[A(x,xy'” ,xyfx)+A(y>y,"' >y’gy)]’ (3.4)

forall x,ye X and a € [0 . Then f and g have a unique common fixed point in X.

1
’ 2(n—1)b2)

Proof. Let xp € X be an arbitrary point and let us define a sequence {x;} in X as

2%h+1
xok+1 = fxor = xo,

Xok+2 = 8X2k+1 = g2k+2x
for k=0,1,2,3,---.

Then, we show that the sequence {x;} is complex valued A;-Cauchy sequence.

0>
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From (3.4), we have
A(%2k+1,X2k+1," " s X2k +1, X2k +2)
= A(fxop, fxor, X2k, 8Yok+1)
3 alA(xor, Xop, - , %2k, fXor) + A(Xop 11, %2841, * » X2k +1,8%2k+1)]

= alA(xop,Xor, " , X2k, X2k +1) + A(X28+1,X2k+1," " * , X2k +1,X2%+2)]

a
S T Ak, Xok, Xk, X1

or

a
=  |A(Xor+1,%28+1," " »X2k+1,%2k+2)| < —a |A(xor, %ok, , %ok, X2k +1)I. (3.5)

Similarly, using the symmetry of X, we get

a

|ACeop+2, Xonr2, s Xoke2, Xoh8) < T 1AWR+1, 0204157, 02041, X2042)]- (3.6)
From (3.5) and (3.6), we have

|A(xor, %ok, , %2k, X2k +1)| < h|A(X2p_1,%2p—1," ", X2k—1,%2k)I, (3.7

for all £ €N, where h = 2 < 1.
By repeatedly applying (3.7), we get
|Axon, %ok, %2k, %¥2p41)| < R A(x0, %0, ,%0,%1)]. (3.8)
Using[(CAz3) and (3.8), we have for &,/ € N with & <[ we get
|A(or, X2k, , X2k, X21)|
< (n—DObIlIA(x2r, %2k, * X2k, X2k+1)| + BIA(X2k+1, X2k +1," " , X2k +1,%21)]
< (n— 1)bIA(xar, X2k, s Xok, Xop+ 1] + (7 — DB |A(Xop+1, X2k +1, " s X2k +1,%2k+2)]
+ 52| A2k +2, Kok, X2k +2,%21)|
< (n— 1)bIA(xor, X2k, s Xok, Xop+ 1) + (1 = DB |A(Xop11, X2k +1, " s X2k +1,%2k+2)]
+(n—1b%|A(op+2,Xok+2," " , X242, X2k+8)] + -
+(n— Db 2 A(xg_o,091-9,+ , X21-2,%21-1)]
+ 622 Ay 1,11, X1, %20)|
<[(n-1Dba?* +(n - Db2a®* ™ 1. 4 (n — 1)pH 212172
+(n— 1> 2 a1 Ao, x0, - ,20,41)]
=(n - Db+ Ba) 1+ -+ (ba)® "2 + (ba)* 1| Alxo, x0, - ,%0,%1)
=(n - DIba)** + (ba)* ! + -1 Alxo,x0, - ,%0,%1)|

(n - 1)(ba)*
S —_—
1-ba
Hence the sequence x9;, is complex valued Ap-Cauchy in X. Since (X,A) is a complete, there

*

|A(xo,x0, " ,%0,%1)| — 0 as k,l — oo (by Lemma |2.11). (3.9)

exists x* € X such that hm xzk =
We show that x* is a ﬁxed point of f.

A(fx* -  fa*,x") (= DBA(Fx*, fx*, -, fx*, frops1) + B2A(f 2%, fa?% .o a2 x%).
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A(fx™, fx*,-,fx",x™)

S (n—DBA(fx*, fx*, - fx*, frops1) + BPA(f Xop+1, fXok+1,  fAop+1,%")

J(n-DbalA(x™,x",- - ,x", fx") + A(fxop, fxop, -+, [Xor, fXop+1)]
+ b2 A(fxgp+1, [ Xohe1, [ X2he1,6")

S(n-DbaA*,x*,-,x", fx*)+(n— DbaA(fxop, fxon, -, [ X2k, fXop+1)
+ b2 A(fxgp+1, [ Xohet, [ X2he1,6")

S (n—-Db%aA(fx*, fu*, -, fx*,2) +(n— DbaA(fxor, fXok, > [ %ok, [*ok+1)
+ b2 A(fXgp+1, [ Xohet, [ X2he1,7).

= JA(fx*, fx*, - fx5,x) <(n - Db2alA(fx*, fx*, -, fx*,x")|
+(n—DbalA(fxor, [k, -, X2k, [ x2r+1)l

2
+ b A(fxop+1, X241, [ X2k 41,27

=1 (h—Dbla 1)b2a[(n — DbalA(fxok, fxor, -, fxor, [ X2r+1)]

+ b2 A(fxop+1, FX2ke1, " [X2k41,% 7)1 — 0, as k — oo.
= |A(fx*,fx*,---, fx*,x*)|=0.
> fx*=x".
Therefore, x* is a fixed point of f.
Similarly, we can show that x* is also fixed point of g i.e. gx* = x*.
Thus fx* =x* = gx*.
Hence x* is common fixed point of f and g.

Now, we show that the uniqueness of the common fixed point of f and g.
Let us assume that y* € X is another common fixed point of f and g. Then we have

AGH " xS AP far s fx*, gy™)
JalAG",x", -2, 2N+ AT,y YT, gy ]
SalAG",x", 2", ) AT, YTy, )]
=0.

Hence

[A(x™,x*,---,x™, ") <0.

= x*=y".

Thus x* is the unique common fixed point of f and g. This completes the proof of the

theorem. 0

Theorem 3.4. Let (X,d) be a complete complex valued Ap-metric space and let f,g:X — X be
any two mappings satisfying the following condition
A(fx,fx,-,fx,8y) 3 alAlx,x, - ,x,8y) + Ay, y, -, ¥, [x)], (3.10)

forall x,ye X and a € |0 , then f and g have a unique common fixed point in X.

)
> b2{(n-1)b+1}
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Proof. Let xp € X be an arbitrary point and let us define a sequence {x2,} in X as

_ _ r2n+1
Xon+1=[x2n = """ %0,

_ _ 2n+2
Xon+2 = 8X2n+1 =8 X0
forn=0,1,2,3,---.

Put x =x92,-1, y = x2, in (3.10) we have

>

A(x2n,%2n, " ,%2n,%2n+1)
= A(fxgn-1,f%2n-1,"" , [ X2n-1,8%2n)
S alA(x2n-1,%2n-1," " ,X2n-1,8%2n) + A(fX2p, fX2n, -, [%2n, fX2n-1)]
= alA(x2n-1,%2n-1," ", X2n—1,%2n+1) + A(X2n,Xon, -, X2n, X2n)]

= aA(X2,-1,%27-1,""* ,X2n—1,%2n+1)

2
S (n—=1)abA(xon-1,%2n-1," " sX2n-1,%2n) + €D A(X2141,%2n4+1, " , X2n+1,%2n)-

Therefore
|A(x2n, %20, , %28, X2n+1)| < (n — D)ablA(x2,-1,%2n—1," " ,X2n—1,%2,)|

+ab?|A(X2n+1, %241, X2n+1,%2n)]

- 2n-1)ab
T 1-ab?

If we put xo,,%2,, " ,%2,41 = A2, and xXo,_1,%2,-1," " , X2, = A2p_1.

Then, from (3.11)), we have

2n—-1ab
1-ab?
= |Agu|<klAgp-1l,

2n—-1)ab
1-ab?

|[A(x2n—-1,X2n-1,"" s X2n-1,%2n)|.

|Agp| < |Agn_1l

where <1.

Repeating this process, we get
|A(x2n,X2n, s X2n+1)| < R|IA(X2n-1,X2n-1, ", %2, )]

2
< k%|A(x2,-2,X2,-2," " ,%27-1)|

2
< k" A(xo,x0, -+ ,x1),

foralln=>=1.

Now
a< 1 sabl<——
b2{(2n-1)b+1} @2n-1)b+1

>1-ab’>1-

1
@2n-1b+1

2n-1)b 0.

> >
@n-1)b+1

Journal of Informatics and Mathematical Sciences, Vol. 12, No. 4, pp. [257 , 2020

(3.11)

(3.12)

(3.13)



266 Common Fixed Point Results for Contractive Mapping in Complex Valued. .. : S. K. Tiwari and M. Gauratra

Also, we have
1

S P @n-1) 1067

= ab®@n-1+ab’<1

= ab3@2n-1)<1-ab?
N ab3(2n—-1) -1
1-ab?
a@n-1b 1
RPN T
>k<l1.
Using[(CAp3)|and (3.13)f, we have for all n,m € N, with n <m
A(f?"x0, " %0, , 2" x0)
< bl(n - DIAFx0,++, F %0, 2" x0)| +|A(f " x0, -, 2 20, £ T x0) ]
<b(n - DIA(f P %0, , 2 x0, F2" o) + B2IAF 2 g, -+, F2 g, 2™ x0)|
<b(n—DIAG %0, , 2 x0, 2 xo) + b3 (n = DIAF2 g, -+, £ 2" g, £27 20|
+ b4|A(f2n+2x0, . ’f2n+2x0’f2mx0)|
< b(n - DIA(f* %o, , 2 20, [ o) + B2 A(F 2 g, -+, £2 g, 27+ 20) | + -+
+ b2n—2m—1|A(f2n—1xO’. .. ’me—le’mexO)l
< (n _ l)b[kzn + b2k2n+1 T+t b2(2m_2n_1k2”_l]|A(xo,xo, . ,xo,x1)|
=(n—DbEX[1+ b2k + (B2 + -+ (b%E)*™ 21| A(xo, x0, - - , X0, %1)]
_(n- 1)bk2"

1-b2k
Hence {x2,} is complex valued A,-Cauchy sequence in X. Since X is complex, there exists v € X

such that r}l_g)lo x9, =v. We show that v is fixed point of f.
We have
A(fv,fuv,...,fv,v)
< (n—DbA(fv,fv, -, fv,F2"  x0) + bAW,v, - v, f2 xg)
3 (n—DbIEA®,v, -+ ,0, 2" ) + A(F P x0, F %0, , 2 %0, FU + DAW, 0, v, £ o)
=[(n—Dba+blAw,v, - ,v, " x0) + (n — DbaA(f*"xo, f 0, , f %0, fV)
ZUn—Dba+blAW,v, v, x0) + (n — DbaA(f P xo, f2 x0,-+ , f %0, [V)
+bA(fv, -, fv,v)
S -Dba+blAw@,v, v, F2* xg) + (n = D2DZaA(f " xo, f " %0, , f " 20, fV)
+(n-1Db2aA(fv,---, fv,v).

|A(xg,%0,* ,%0,21)| — 0, as n,m — oo.

b - oy f2n
= |A(fv, ,fv,v)lsl_(n_l)bza[(n Dba+bllA(,---,v, f"" "xo)|
+(n—12b2alA(f " xo, f 2 x0, -+ , f 2" x0, fU)] — 0 as n — oo.
= |A(fv,---,fv,v)|=0.

= fv=v.
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Therefore, v is a fixed point of f. Similarly, we can show that, v is a fixed point of g i.e. gv =v.
Thus fv=v = gv.

Hence v € X is common fixed point of f and g.

Now, we show that the common fixed point of f and g are unique.

Let w € X be another common fixed point of f and g. Then we have

A(,v,---,v,w)=A(fv,fuv, -, fv,w)
ZalA@,v, v, fw)+Alw,w, - ,w,fv)]
=alAWw,v,---,v,w)+Aw,w,--- ,w,v)]
ZalA@,v, -, v,w)+bA(v,v, - ,v,w)]
Za(l+b)A(v,v, - ,v,w)

= |A(U,U,"',U,LU)|Sa(1+b)|A(U,U,"',U,LU)|.
But
a< 1
b2{(2n-1)b + 1}
1
< -
b2(b+1)
1
= ab+1)< 72 <1.

Therefore, we must have
|A(v,v,---,0,w)|=0=>v =w.

Hence v is the unique common fixed point of f and g. This completes the proof of the
theorem. 0
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