Common Fixed Point Results for Contractive Mapping in Complex Valued A_b-metric Space

Surendra Kumar Tiwari* and Mridusmita Gauratra

Department of Mathematics, Dr. C. V. Raman University, Kota, Bilaspur, Chattishgarh, India

*Corresponding author: sk10tiwari@gmail.com

Received: July 4, 2020 Accepted: September 29, 2020 Published: December 31, 2020

Abstract. In this article, we prove common fixed point results for two self mappings in complex valued A_b-metric space. Our results extend and generalize the common fixed point result of Singh and Singh [15].

Keywords. A_b-metric space; Complex valued metric space; Complex valued b-metric space; Complex valued A_b-metric space; Common fixed point

MSC. 47H10; 54H25; 37C25; 55M20

Copyright © 2020 Surendra Kumar Tiwari and Mridusmita Gauratra. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The concept of complex valued metric space was introduced by Azam et al. [6], which is the generalization of the classical metric space and proved some fixed point results for a pair of mappings for contractive condition satisfying a rational expression.

Subsequently, many authors have obtained fixed point and common fixed points of set mappings in complex valued metric spaces (see for instance [1,3,4,7–9,14,17–19,21]).

In 2013, Rao et al. [13] introduced the concept of complex valued b-metric space, which was general than the well known complex valued metric space. After that, many authors have generalize and extend the results in complex valued b-metric spaces (see for instance [10–13]).

In 2016, Ughade et al. [20], introduce the notation of A_b-metric space and proved some fixed point theorems under contraction and expansion type condition.
Recently, in 2019, Singh and Singh [15] introduced the concept of complex valued A_b-metric space and proved fixed point theorem, and also in 2020, he is proved common fixed point for two self mappings in rational expression and complex valued A_b-metric spaces, which is generalization of the results giving by Mukheimer [11].

In this paper, we describe and extend common fixed point theorem in complex valued A_b-metric space. Our results generalized the results of Singh and Singh [15].

2. Basic Concept and Mathematical Preliminary

In this section, we recall some properties of A-metric space, A_b-metric space, complex valued metric space, complex valued b-metric space and complex valued A_b-metric space.

Definition 2.1 ([2]). Let X be a nonempty set. A function $A : X^n \rightarrow [0, \infty)$ is called an A-metric on X if for any $x_i, a \in X, i = 1, 2, 3, \ldots, n$, the following conditions hold:

(A1) $A(x_1, x_2, x_3, \ldots, x_{(n-1)}, x_n) \geq 0$,

(A2) $A(x_1, x_2, x_3, \ldots, x_{(n-1)}, x_n) = 0$ if and only if $x_1 = x_2 = x_3 = \cdots = x_{n-1} = x_n$,

(A3) $A(x_1, x_2, x_3, \ldots, x_{(n-1)}, x_n) \leq A(x_1, x_1, x_1, \ldots, (x_1)_{(n-1)}, a) + A(x_2, x_2, x_2, \ldots, (x_2)_{(n-1)}, a) + A(x_3, x_3, x_3, \ldots, (x_3)_{(n-1)}, a) + \cdots + A(x_{n-1}, x_{n-1}, x_{n-1}, \ldots, (x_{n-1})_{(n-1)}, a) + A(x_n, x_n, x_n, \ldots, (x_n)_{(n-1)}, a)$.

The pair (X, A) is called an A-metric space.

Definition 2.2 ([20]). Let X be a nonempty set and $b \geq 1$ be a given number. A function $A : X^n \rightarrow [0, \infty)$ is called an A_b-metric on X if for any $x_i, a \in X, i = 1, 2, 3, \cdots, n$, the following conditions hold:

(A$_b$1) $A(x_1, x_2, x_3, \ldots, x_{n-1}, x_n) \geq 0$,

(A$_b$2) $A(x_1, x_2, x_3, \ldots, x_{n-1}, x_n) = 0$ if and only if $x_1 = x_2 = x_3 = \cdots = x_{n-1} = x_n$,

(A$_b$3) $A(x_1, x_2, x_3, \ldots, x_{n-1}, x_n) \leq b \left[A(x_1, x_1, x_1, \ldots, (x_1)_{(n-1)}, a) + A(x_2, x_2, x_2, \ldots, (x_2)_{(n-1)}, a) + A(x_3, x_3, x_3, \ldots, (x_3)_{(n-1)}, a) + \cdots + A(x_{n-1}, x_{n-1}, x_{n-1}, \ldots, (x_{n-1})_{(n-1)}, a) + A(x_n, x_n, x_n, \ldots, (x_n)_{(n-1)}, a) \right]$.

The pair (X, A) is called an A_b-metric space.

Remark 2.3. A_b-metric space is more general than A-metric space. Moreover, A-metric space is a special case of A_b-metric space with $b = 1$.
Example 2.4. Let $X = [1, +\infty)$. Define $A_b : X^n \to [0, \infty)$ by

$$A_b(x_1, x_2, x_3, \cdots, x_n) = \sum_{i=1}^{n} \sum_{i<j} |x_i - x_j|^2$$

for all $x_i \in X$, $i = 1, 2, 3, \cdots, n$.

Then (X, A_b) is an A_b-metric space with $b = 2 > 1$.

The concept of complex valued metric space was initiated by Azam et al. [6]. Let C be the set of complex numbers and $z_1, z_2 \in C$. Define a partial order \preceq on C as follows:

$z_1 \preceq z_2$ if and only if $\text{Re}(z_1) \leq \text{Re}(z_2)$ and $\text{Im}(z_1) \leq \text{Im}(z_2)$.

It follows that $z_1 \preceq z_2$ if one of the following conditions are satisfied:

$(C_1) \quad \text{Re}(z_1) = \text{Re}(z_2)$ and $\text{Im}(z_1) < \text{Im}(z_2)$,

$(C_2) \quad \text{Re}(z_1) < \text{Re}(z_2)$ and $\text{Im}(z_1) = \text{Im}(z_2)$,

$(C_3) \quad \text{Re}(z_1) = \text{Re}(z_2)$ and $\text{Im}(z_1) < \text{Im}(z_2)$,

$(C_4) \quad \text{Re}(z_1) < \text{Re}(z_2)$ and $\text{Im}(z_1) < \text{Im}(z_2)$.

Particularly, we write $z_1 \preceq z_2$ if $z_1 \neq z_2$ and one of $[C_2], [C_3]$ and $[C_4]$ is satisfied and we write $z_1 \preceq z_2$ if only $[C_4]$ is satisfied. The following statements hold:

1. If $a, b \in R$ with $a \leq b$, then $az \preceq bz$ for all $0 \preceq z \in C$.
2. If $z_1 \preceq z_2$, then $az_1 \preceq az_2$ for all $0 \leq a \in R$.
3. If $0 \preceq z_1 \preceq z_2$, then $|z_1| \leq |z_2|$.
4. If $0 < z_1 < z_2$, then $|z_1| < |z_2|$.
5. If $z_1 \preceq z_2$ and $z_2 < z_3$, then $z_1 < z_3$.

Definition 2.5 ([6]). Let X be a nonempty set. A function $d : X \times X \to C$ is called a complex valued metric on X if for all $x, y, z \in X$, the following conditions are satisfied:

(i) $0 \preceq d(x, y)$ and $d(x, y) = 0$ if and only if $x = y$,

(ii) $d(x, y) = d(y, x)$,

(iii) $d(x, y) \preceq d(x, z) + d(z, y)$.

The pair (X, d) is called a complex valued metric space.

Definition 2.6 ([11]). Let X be a nonempty set and let $s \geq 1$. A function $d : X \times X \to C$ is called a complex valued b-metric on X if for all $x, y, z \in X$, the following conditions are satisfied:

(i) $0 \preceq d(x, y)$ and $d(x, y) = 0$ if and only if $x = y$,

(ii) $d(x, y) = d(y, x)$,

(iii) $d(x, y) \preceq s[d(x, z) + d(z, y)]$.

The pair (X, d) is called a complex valued b-metric space.

Definition 2.7 ([15]). Let X be a nonempty set and $b \geq 1$ be a given real number. Suppose that a mapping $A : X^n \to C$ satisfies for all $x_i, a \in X$, $i = 1, 2, 3, \cdots, n$:

(CA$_b$1) $0 \preceq A(x_1, x_2, x_3, \cdots, x_n)$,
where \(\alpha \) valued \(A \)

(CA\(_b\)) 2 \(A(x_1, x_2, x_3, \cdots, x_n) = 0 \Leftrightarrow x_1 = x_2 = x_3 = \cdots = x_n, \)

(CA\(_b\)) 3 \(A(x_1, x_2, x_3, \cdots, x_n) \geq b \left[A(x_1, x_1, x_1, \cdots, (x_1)_{(n-1)}, a) + A(x_2, x_2, x_2, \cdots, (x_2)_{(n-1)}, a) + \cdots + A(x_n, x_n, x_n, \cdots, (x_n)_{(n-1)}, a) \right]. \)

Then \(A \) is called a complex valued \(A_b \)-metric on \(X \) and the pair \((X, A)\) is called a complex valued \(A_b \)-metric space.

Example 2.8 ([15]). Let \(X = \mathbb{R} \) and \(A : X^n \to C \) be such that

\[
A(x_1, x_2, x_3, \cdots, x_n) = (\alpha + i\beta)A_+(x_1, x_2, x_3, \cdots, x_n),
\]

where \(\alpha, \beta \geq 0 \) are constants and \(A_+ \) is an \(A_b \)-metric on \(X \). Then \(A \) is a complex valued \(A_b \)-metric on \(X \). As a particular case, we have the following example of complex valued \(A_b \)-metric on \(X \). The mapping \(A : X^n \to C \) defined by \(A(x_1, x_2, x_3, \cdots, x_n) = (1 + i) \sum_{i=1}^{n} \sum_{i<j} |x_i - x_j|^2 \) is a complex valued \(A_b \)-metric on \(X = \mathbb{R} \) with \(b = 2 \).

Definition 2.9 ([15]). A complex valued \(A_b \)-metric space \((X, A)\) is said to be symmetric if

\[
A(x_1, x_1, x_1, \cdots, (x_1)_{(n-1)}, x_2) = A(x_2, x_2, x_2, \cdots, (x_2)_{(n-1)}, x_1),
\]

for all \(x_1, x_2 \in X \).

Definition 2.10 ([15]). Let \((X, A)\) be a complex valued \(A_b \)-metric space.

(i) A sequence \(\{x_p\} \) in \(X \) is said to be complex valued \(A_b \)-convergent to \(x \) if for every \(a \in C \) with \(0 < a \), there exists \(k \in \mathbb{N} \) such that \(A(x_p, x_p, \cdots, x_p, x) < a \) or \(A(x, x, \cdots, x, x_p) < a \) for all \(p \geq k \) and is denoted by \(\lim_{p \to \infty} x_p = x \) or \(x_p \to x \) as \(p \to \infty \).

(ii) A sequence \(\{x_p\} \) in \(X \) is called complex valued \(A_b \)-Cauchy if for every \(a \in C \) with \(0 < a \), there exists \(k \in \mathbb{N} \) such that \(A(x_p, x_p, \cdots, x_p, x_p) < a \) for each \(p, q \geq k \).

(iii) If every complex valued \(A_b \)-Cauchy sequence is complex valued \(A_b \)-convergent in \(X \), then \((X, A)\) is said to be complex valued \(A_b \)-complete.

Lemma 2.11 ([15]). Let \((X, A)\) be a complex valued \(A_b \)-metric space and let \(\{x_p\} \) be a sequence in \(X \). Then \(\{x_p\} \) is complex valued \(A_b \)-convergent to \(x \) if and only if \(|A(x_p, x_p, \cdots, x_p, x)| \to 0 \) as \(p \to \infty \) or \(|A(x, x, \cdots, x, x_p)| \to 0 \) as \(p \to \infty \).

Lemma 2.12. Let \((X, A)\) be a complex valued \(A_b \)-metric space and let \(\{x_p\} \) be a sequence in \(X \). Then \(\{x_p\} \) is complex valued \(A_b \)-Cauchy sequence if and only if \(|A(x_p, x_p, \cdots, x_p, x_q)| \to 0 \) as \(p, q \to \infty \).

Lemma 2.13. Let \((X, A)\) be a complex valued \(A_b \)-metric space. Then

\[
A(x, x, \cdots, x, y) \geq bA(y, y, \cdots, y, x).
\]

for all \(x, y \in X \).
3. Main Results

Theorem 3.1. Let \((X,A) \) be a complete complex valued \(A_b \)-metric space and \(f,g : X \rightarrow X \) be any two mapping satisfying

\[
A(fx,fx,\cdots,fx,gy) \preceq \alpha A(x,x,\cdots,y).
\] (3.1)

for all \(x,y \in X \) where \(\alpha \in [0,\frac{1}{b^2}] \). Then \(f \) and \(g \) have a unique common fixed point in \(X \).

Proof. Let \(x_0 \in X \) be an arbitrary point and let \(\{x_k\} \) in \(X \) be defined as

\[
x_{2k+1} = fx_{2k} = f^{2k+1}x_0,
\]

\[
x_{2k+2} = gx_{2k+1} = g^{2k+2}x_0,
\]

for \(k = 0,1,2,3,\cdots. \)

Then, we show that the sequence \(\{x_k\} \) is complex valued \(A_b \)-Cauchy.

From (3.1), we have

\[
A(x_{2k+1},x_{2k+1},\cdots,x_{2k+1},x_{2k+2}) \preceq A(fx_{2k},fx_{2k},\cdots,fx_{2k},gy_{2k+1})
\]

\[
\preceq \alpha A(x_{2k},x_{2k},\cdots,x_{2k},y_{2k+1})
\]

\[
\vdots
\]

\[
\preceq \alpha^k A(x_0,x_0,\cdots,x_0,y_1).
\] (3.2)

Using \([CA_b3]\) and (3.2), for \(k, l \in \mathbb{N} \) with \(k < l \), we have

\[
A(x_k,x_k,\cdots,x_k,x_l) \preceq (n-1) bA(x_k,x_k,\cdots,x_k,x_{k+1}) + b^2 A(x_{k+1},x_{k+1},\cdots,x_{k+1},x_l)
\]

\[
\preceq (n-1) bA(x_k,x_k,\cdots,x_k,x_{k+1}) + b^2 A(x_{k+1},x_{k+1},\cdots,x_{k+1},x_{k+2}) + \cdots
\]

\[
+ b^{2l-k-1} A(x_{l-1},x_{l-1},\cdots,x_{l-1},x_l)
\]

\[
\preceq (n-1) bA^k + b^2 A^k + b^4 A^{k+2} + \cdots + b^{2l-k-1} A^{l-1} A(x_0,\cdots,x_{k+1})
\]

\[
\preceq (n-1) bA^k + b^2 A^k + b^4 A^{k+2} + \cdots + b^{2l-k-1} A^{l-1} A(x_0,\cdots,x_{k+1})
\]

\[
\preceq (n-1) bA^k
\]

Thus, we obtain

\[
|A(x_k,x_k,\cdots,x_k,x_l)| \leq \frac{(n-1)(ba)^k}{1-b^2A} |A(x_0,x_0,\cdots,x_0,x_1)|.
\]

Since \(\alpha \in [0,\frac{1}{b^2}] \) where \(b > 1 \), taking limit as \(k,l \to \infty \), we have

\[
|A(x_0,x_0,\cdots,x_0,x_1)| \leq \frac{(n-1)(ba)^k}{1-b^2A} |A(x_0,x_0,\cdots,x_0,x_1)| \to 0.
\]

Therefore, \(|A(x_0,x_0,\cdots,x_0,x_1)| \to 0 \) as \(k,l \to \infty \).

So, by Lemma 2.11 (\(x_k \)) is a complex valued \(A_b \)-Cauchy sequence. Since \((X,A) \) is complete, there exist \(u \in X \) such that the sequence \(\{x_k\} \) is complex valued \(A_b \)-convergent to \(u \).

Now, we show that \(u \) is fixed point of \(f \). We have

\[
A(fu,fu,\cdots,fu,u) \preceq (n-1) bA(fu,fu,\cdots,fu,x_{2k+2}) + bA(u,u,\cdots,u,x_{2k+2})
\]

\[
= (n-1) bA(fu,fu,\cdots,fu,gy_{2k+1}) + bA(u,u,\cdots,u,x_{2k+2})
\]
Theorem 3.3. Let \((X, A) \) be a complete complex valued \(A_b \)-metric space and \(f, g : X \to X \) be any two mapping for some positive constant \(k \)
\[
A(f^{2k+1}x, f^{2k+1}x, \ldots, f^{2k+1}x, g^{2k+2}y) \lesssim aA(x, x, \ldots, x, y),
\]
for all \(x, y \in X \) where \(a \in (0, \frac{1}{b^2}) \), then \(f \) and \(g \) have a unique common fixed point in \(X \).

From Theorem 3.1 that \(f^{2k+1}x \) has a unique fixed point \(u \) in \(X \). But \(f^{2k+1}(fu) = f(f^{2k+1}u) = fu \). So, \(fu \) is also fixed point of \(f^{2k+1} \). Hence \(fu = u \) is a fixed point of \(f \). Since the fixed point of \(f \) is also fixed point of \(f^{2k+1} \), the fixed point of \(f \) is unique. Similarly it can be established that \(gu = u \). Then \(fu = u = gu \). Thus \(u \) is common fixed point of \(f \) and \(g \).

Corollary 3.2. Let \((X, A) \) be a complete complex valued \(A_b \)-metric space and \(f, g : X \to X \) be any two mapping satisfying the following condition
\[
A(fx, fx, \ldots, fx, gy) \lesssim a[A(x, x, \ldots, x, fx) + A(y, y, \ldots, y, gy)], \tag{3.4}
\]
for all \(x, y \in X \) and \(a \in \left(0, \frac{1}{2(n-1)b^2}\right) \). Then \(f \) and \(g \) have a unique common fixed point in \(X \).

Proof. Let \(x_0 \in X \) be an arbitrary point and let us define a sequence \((x_k) \) in \(X \) as
\[
x_{2k+1} = fx_{2k} = f^{2k+1}x_0, \quad x_{2k+2} = gx_{2k+1} = g^{2k+2}x_0,
\]
for \(k = 0, 1, 2, 3, \ldots \).

Then, we show that the sequence \((x_k) \) is complex valued \(A_b \)-Cauchy sequence.
From (3.4), we have
\[
A(x_{2k+1}, x_{2k+1}, \ldots, x_{2k+1}, x_{2k+2})
= A(f x_{2k}, f x_{2k}, \ldots, f x_{2k}, g y_{2k+1})
\leq a[A(x_{2k}, x_{2k}, \ldots, x_{2k}, f x_{2k}) + A(x_{2k+1}, x_{2k+1}, \ldots, x_{2k+1}, g x_{2k+1})]
= a[A(x_{2k}, x_{2k}, \ldots, x_{2k}, x_{2k+1}) + A(x_{2k+1}, x_{2k+1}, \ldots, x_{2k+1}, x_{2k+2})]
\leq \frac{a}{1-a}[A(x_{2k}, x_{2k}, \ldots, x_{2k}, x_{2k+1})]
\]
or
\[
\Rightarrow |A(x_{2k+1}, x_{2k+1}, \ldots, x_{2k+1}, x_{2k+2})| \leq \frac{a}{1-a}|A(x_{2k}, x_{2k}, \ldots, x_{2k}, x_{2k+1})|. \tag{3.5}
\]
Similarly, using the symmetry of X, we get
\[
|A(x_{2k+2}, x_{2k+2}, \ldots, x_{2k+2}, x_{2k+3})| \leq \frac{a}{1-a}|A(x_{2k+1}, x_{2k+1}, \ldots, x_{2k+1}, x_{2k+2})|. \tag{3.6}
\]
From (3.5) and (3.6), we have
\[
|A(x_{2k}, x_{2k}, \ldots, x_{2k}, x_{2k+1})| \leq h|A(x_{2k-1}, x_{2k-1}, \ldots, x_{2k-1}, x_{2k})|, \tag{3.7}
\]
for all \(k \in \mathbb{N}\), where \(h = \frac{a}{1-a} < 1\).

By repeatedly applying (3.7), we get
\[
|A(x_{2k}, x_{2k}, \ldots, x_{2k}, x_{2k+1})| \leq h^{2k}|A(x_0, x_0, \ldots, x_0, x_1)|. \tag{3.8}
\]

Using (CA\(\alpha\)3) and (3.8), we have for \(k, l \in \mathbb{N}\) with \(k < l\) we get
\[
|A(x_{2k}, x_{2k}, \ldots, x_{2k}, x_{2l})|
\leq (n-1)b|A(x_{2k}, x_{2k}, \ldots, x_{2k}, x_{2k+1})| + b|A(x_{2k+1}, x_{2k+1}, \ldots, x_{2k+1}, x_{2l})|
\leq (n-1)b|A(x_{2k}, x_{2k}, \ldots, x_{2k}, x_{2k+1})| + (n-1)b^2|A(x_{2k+1}, x_{2k+1}, \ldots, x_{2k+1}, x_{2k+2})|
+ b^3|A(x_{2k+2}, x_{2k+2}, \ldots, x_{2k+2}, x_{2l})|
\leq (n-1)b|A(x_{2k}, x_{2k}, \ldots, x_{2k}, x_{2k+1})| + (n-1)b^2|A(x_{2k+1}, x_{2k+1}, \ldots, x_{2k+1}, x_{2k+2})|
+ (n-1)b^3|A(x_{2k+2}, x_{2k+2}, \ldots, x_{2k+2}, x_{2k+3})| + \cdots
+ (n-1)b^{2k-2l-1}|A(x_{2l-2}, x_{2l-2}, \ldots, x_{2l-2}, x_{2l-1})|
+ b^{2l-2k-1}|A(x_{2l-1}, x_{2l-1}, \ldots, x_{2l-1}, x_{2l})|
\leq [(n-1)b a^{2k} + (n-1)b a^{2k+1} + \cdots + (n-1)b^{2k-2l-1} a^{2l-2}]
+ (n-1)b^{2l-2k-1} a^{2l-1}|A(x_0, x_0, \ldots, x_0, x_1)|
= (n-1)[(b a)^{2k} + (b a)^{2k+1} + \cdots + (b a)^{2l-2} + (b a)^{2l-1}]|A(x_0, x_0, \ldots, x_0, x_1)|
= (n-1)[(b a)^{2k} + (b a)^{2k+1} + \cdots]|A(x_0, x_0, \ldots, x_0, x_1)|
\leq \frac{(n-1)(b a)^{2k}}{1-b a}|A(x_0, x_0, \ldots, x_0, x_1)| \to 0 \text{ as } k, l \to \infty \text{ (by Lemma 2.1)}. \tag{3.9}
\]
Hence the sequence \(x_{2k}\) is complex valued \(A_b\)-Cauchy in \(X\). Since \((X, A)\) is a complete, there exists \(x^* \in X\) such that \(\lim_{k \to \infty} x_{2k} = x^*\).

We show that \(x^*\) is a fixed point of \(f\).
\[
A(f x^*, f x^*, \ldots, f x^*, x^*) \leq (n-1)b A(f x^*, f x^*, \ldots, f x^*, f x_{2k+1}) + b^2 A(f x^{2k}, f x^{2k}, \ldots, f x^{2k}, x^*).
\]
A(x^*, x^*, \cdots, x^*)
\preceq (n-1)bA(x^*, x^*, \cdots, x^*, f x_{2k+1}) + b^2A(x_{2k+1}, f x_{2k+1}, \cdots, f x_{2k+1}, x^*)
\preceq (n-1)bA(x^*, x^*, \cdots, x^*, f x^*) + A(x_{2k}, f x_{2k}, \cdots, f x_{2k}, f x_{2k+1})
+ b^2A(x_{2k+1}, f x_{2k+1}, \cdots, f x_{2k+1}, x^*)
\preceq (n-1)bA(x^*, x^*, \cdots, x^*, f x^*) + (n-1)bA(x_{2k}, f x_{2k}, \cdots, f x_{2k}, f x_{2k+1})
+ b^2A(x_{2k+1}, f x_{2k+1}, \cdots, f x_{2k+1}, x^*)
\preceq (n-1)bA(x^*, x^*, \cdots, x^*, f x^*) + (n-1)bA(x_{2k}, f x_{2k}, \cdots, f x_{2k}, f x_{2k+1})
+ b^2A(x_{2k+1}, f x_{2k+1}, \cdots, f x_{2k+1}, x^*)
\Rightarrow |A(x^*, x^*, \cdots, x^*, f x^*)| \leq (n-1)b^2 a|A(x^*, x^*, \cdots, f x^*, x^*)|
+ (n-1)bA(x_{2k}, f x_{2k}, \cdots, f x_{2k}, f x_{2k+1})|
+ b^2|A(x_{2k+1}, f x_{2k+1}, \cdots, f x_{2k+1}, x^*)|
\leq \frac{1}{1 - (n-1)b^2 a}|(n-1)bA(x_{2k}, f x_{2k}, \cdots, f x_{2k}, f x_{2k+1})|
+ b^2|A(x_{2k+1}, f x_{2k+1}, \cdots, f x_{2k+1}, x^*)| \to 0, \text{ as } k \to \infty.
\Rightarrow |A(x^*, x^*, \cdots, x^*, f x^*)| = 0.
\Rightarrow x^* = x^*.
Thus, x^* is a fixed point of f.
Hence, x^* is common fixed point of f and g.

Now, we show that the uniqueness of the common fixed point of f and g.
Let us assume that y^* \in X is another common fixed point of f and g. Then we have
A(x^*, x^*, \cdots, x^*, y^*) \preceq A(x^*, x^*, \cdots, f x^*, g y^*)
\preceq a[A(x^*, x^*, \cdots, x^*, f x^*) + A(y^*, y^*, \cdots, y^*, g y^*)]
\preceq a[A(x^*, x^*, \cdots, x^*, x^*) + A(y^*, y^*, \cdots, y^*, y^*)]
\preceq 0.
Hence
|A(x^*, x^*, \cdots, x^*, y^*)| \leq 0.
\Rightarrow x^* = y^*.
Thus x^* is the unique common fixed point of f and g. This completes the proof of the theorem.

Theorem 3.4. Let (X, d) be a complete complex valued A-b-metric space and let f, g : X \to X be any two mappings satisfying the following condition

\[A(f x, f x, \cdots, f x, g y) \preceq a[A(x, x, \cdots, x, g y) + A(y, y, \cdots, y, f x)], \quad (3.10) \]

for all x, y \in X and a \in \left[0, \frac{1}{b^2(n-1)+1} \right], then f and g have a unique common fixed point in X.
Proof. Let \(x_0 \in X \) be an arbitrary point and let us define a sequence \(\{x_{2n}\} \) in \(X \) as

\[
x_{2n+1} = f x_{2n} = f^{2n+1} x_0,
\]

\[
x_{2n+2} = g x_{2n+1} = g^{2n+2} x_0,
\]

for \(n = 0, 1, 2, 3, \ldots \).

Put \(x = x_{2n-1}, y = x_{2n} \) in (3.10) we have

\[
A(x_{2n}, x_{2n}, \cdots, x_{2n}, x_{2n+1})
\]

\[
= A(f x_{2n-1}, f x_{2n-1}, \cdots, f x_{2n-1}, g x_{2n})
\]

\[
\lesssim a[A(x_{2n-1}, x_{2n-1}, \cdots, x_{2n-1}, g x_{2n}) + A(f x_{2n}, f x_{2n}, \cdots, f x_{2n}, f x_{2n-1})]
\]

\[
= a[A(x_{2n-1}, x_{2n-1}, \cdots, x_{2n-1}, x_{2n+1}) + A(x_{2n}, x_{2n}, \cdots, x_{2n}, x_{2n})]
\]

\[
= aA(x_{2n-1}, x_{2n-1}, \cdots, x_{2n-1}, x_{2n+1})
\]

\[
\lesssim (n - 1) a b A(x_{2n-1}, x_{2n-1}, \cdots, x_{2n-1}, x_{2n}) + a b^2 A(x_{2n+1}, x_{2n+1}, \cdots, x_{2n+1}, x_{2n}).
\]

Therefore

\[
|A(x_{2n}, x_{2n}, \cdots, x_{2n}, x_{2n+1})| \leq (n - 1) a b |A(x_{2n-1}, x_{2n-1}, \cdots, x_{2n-1}, x_{2n})| + a b^2 |A(x_{2n+1}, x_{2n+1}, \cdots, x_{2n+1}, x_{2n})|
\]

\[
\leq \frac{(2n - 1) a b}{1 - a b^2} |A(x_{2n-1}, x_{2n-1}, \cdots, x_{2n-1}, x_{2n})|.
\] (3.11)

If we put \(x_{2n}, x_{2n}, \cdots, x_{2n+1} = A_{2n} \) and \(x_{2n-1}, x_{2n-1}, \cdots, x_{2n} = A_{2n-1} \).

Then, from (3.11), we have

\[
|A_{2n}| \leq \frac{(2n - 1) a b}{1 - a b^2} |A_{2n-1}|
\]

\[
\Rightarrow |A_{2n}| \leq k |A_{2n-1}|,
\] (3.12)

where \(\frac{(2n-1)a b}{1-a b^2} < 1 \).

Repeating this process, we get

\[
|A(x_{2n}, x_{2n}, \cdots, x_{2n+1})| \leq k |A(x_{2n-1}, x_{2n-1}, \cdots, x_{2n})|
\]

\[
\leq k^2 |A(x_{2n-2}, x_{2n-2}, \cdots, x_{2n-1})|
\]

\[
\vdots
\]

\[
\leq k^{2n} |A(x_0, x_0, \cdots, x_1)|,
\] (3.13)

for all \(n \geq 1 \).

Now

\[
a < \frac{1}{b^2((2n-1)b+1)} \Rightarrow a b^2 < \frac{1}{(2n-1)b+1}
\]

\[
\Rightarrow 1 - a b^2 > 1 - \frac{1}{(2n-1)b+1}
\]

\[
\Rightarrow \frac{(2n-1)b}{(2n-1)b+1} > 0.
\]
Also, we have
\[\frac{1}{b^3((2n-1)+b^2)} \Rightarrow a b^3(2n-1) + a b^2 < 1 \]
\[\Rightarrow a b^3(2n-1) < 1 - a b^2 \]
\[\Rightarrow \frac{a b^3(2n-1)}{1 - a b^2} < 1 \]
\[\Rightarrow a(2n-1)b < 1 \]
\[\Rightarrow \frac{1}{b^2} < 1 \]
\[\Rightarrow k < 1. \]

Using (CAₙ)₃ and (3.13), we have for all \(n, m \in \mathbb{N} \), with \(n < m \)
\[A(f^{2n}x₀, f^{2n}x₀, \ldots, f^{2n}x₀) \]
\[\leq b(n-1)|A(f^{2n}x₀, \ldots, f^{2n}x₀, f^{2n+1}x₀)| + |A(f^{2n}x₀, \ldots, f^{2n}x₀, f^{2n+1}x₀)| \]
\[\leq b(n-1)|A(f^{2n}x₀, \ldots, f^{2n}x₀, f^{2n+1}x₀)| + b^2|A(f^{2n+1}x₀, \ldots, f^{2n+1}x₀, f^{2n}x₀)| \]
\[\leq b(n-1)|A(f^{2n}x₀, \ldots, f^{2n}x₀, f^{2n+1}x₀)| + b^3(n-1)|A(f^{2n+1}x₀, \ldots, f^{2n+1}x₀, f^{2n+2}x₀)| \]
\[+ b^4|A(f^{2n+2}x₀, \ldots, f^{2n+2}x₀, f^{2n}x₀)| \]
\[\leq b(n-1)|A(f^{2n}x₀, \ldots, f^{2n}x₀, f^{2n+1}x₀)| + b^2|A(f^{2n+1}x₀, \ldots, f^{2n+1}x₀, f^{2n+2}x₀)| + \ldots \]
\[+ b^{2m-1}|A(f^{2n-m}x₀, \ldots, f^{2m-1}x₀, f^{2m}x₀)| \]
\[\leq (n-1)b[k^2 + b^2k^2 + \ldots + b^{2m-1}k^{2m-1}]|A(x₀, x₀, \ldots, x₀, x₁)| \]
\[= (n-1)b k^{2n} (1 + b^2k + (b^2k)^2 + \ldots + (b^2k)^{2m-1})|A(x₀, x₀, \ldots, x₀, x₁)| \]
\[\leq \frac{(n-1)b k^{2n}}{1 - b^2k} |A(x₀, x₀, \ldots, x₀, x₁)| \to 0, \quad as \ n, m \to \infty. \]

Hence \(x_{2n} \) is complex valued \(A_b \)-Cauchy sequence in \(X \). Since \(X \) is complex, there exists \(v \in X \) such that \(\lim_{n \to \infty} x_{2n} = v \). We show that \(v \) is fixed point of \(f \).

We have
\[A(f^2v, f^2v, \ldots, f^2v, v) \]
\[\leq (n-1)baA(f^2v, v, \ldots, v, f^{2n+1}x₀) + bA(v, v, \ldots, v, f^{2n+1}x₀) \]
\[\leq [(n-1)ba + b]A(v, v, \ldots, v, f^{2n+1}x₀) + (n-1)baA(f^{2n}x₀, f^{2n}x₀, \ldots, f^{2n}x₀, f^{2n}x₀, f^{2n}x₀) \]
\[\Rightarrow |A(f^2v, \ldots, f^2v, v)| \leq \frac{1}{1-(n-1)ba} [(n-1)ba + b]A(v, v, \ldots, v, f^{2n+1}x₀) \]
\[\Rightarrow |A(f^2v, \ldots, f^2v, v)| = 0. \]
\[\Rightarrow f^2v = v. \]
Therefore, \(v \) is a fixed point of \(f \). Similarly, we can show that, \(v \) is a fixed point of \(g \) i.e. \(gv = v \). Thus \(fv = v = gv \).

Hence \(v \in X \) is common fixed point of \(f \) and \(g \).

Now, we show that the common fixed point of \(f \) and \(g \) are unique.

Let \(w \in X \) be another common fixed point of \(f \) and \(g \). Then we have

\[
A(v, v, \ldots, v, w) = A(fv, fv, \ldots, fv, w)
\]

\[
\geq a[A(v, v, \ldots, v, w) + A(w, w, \ldots, w, w)]
\]

\[
= a[A(v, v, \ldots, v, w) + A(w, w, \ldots, w, v)]
\]

\[
\geq a[A(v, v, \ldots, v, w) + bA(v, v, \ldots, v, w)]
\]

\[
\geq a(1 + b)A(v, v, \ldots, v, w)
\]

\[
\Rightarrow |A(v, v, \ldots, v, w)| \leq a(1 + b)|A(v, v, \ldots, v, w)|.
\]

But

\[
a < \frac{1}{b^2(2n - 1)b + 1}
\]

\[
< \frac{1}{b^2(b + 1)}
\]

\[
\Rightarrow a(b + 1) < \frac{1}{b^2} < 1.
\]

Therefore, we must have

\[
|A(v, v, \ldots, v, w)| = 0 \Rightarrow v = w.
\]

Hence \(v \) is the unique common fixed point of \(f \) and \(g \). This completes the proof of the theorem.

\[\square\]

Acknowledgement

The author is very thankful for helpful suggestions and corrections made by the referees who reviewed this paper.

Competing Interests

The authors declare that they have no competing interests.

Authors’ Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

References

Common Fixed Point Results for Contractive Mapping in Complex Valued...: S. K. Tiwari and M. Gauratra

Common Fixed Point Results for Contractive Mapping in Complex Valued

