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Stability of Two Superposed Rivlin-Ericksen Viscoelastic Dusty
Fluids in the Presence of Magnetic Field

Vivek Kumar and Abhilasha

Abstract. The stability of the plane interface separating two Rivlin-Ericksen
viscoelastic superposed fluids permeated with suspended particles and uniform
horizontal magnetic field is considered following the linearized perturbation
theory and normal mode analysis. The stability analysis has been carried
out, for mathematical simplicity, for two highly viscoelastic fluids of equal
kinematic viscosities and equal kinematic viscoelasticities. For potentially stable
configuration, the system is found to be stable for disturbances of all wave
numbers. The magnetic field succeeds in stabilizing certain wave-number range,
for the potentially unstable configuration. The case of exponentially varying
density, viscosity, viscoelasticity, magnetic field and particle number density is also
considered. For stable density stratification, the system is found to be stable for
disturbances of all wave numbers. The magnetic field succeeds in stabilizing the
potentially unstable stratifications for a certain wave-number range which were
unstable in the absence of the magnetic field. Discussion of oscillatory modes and
non-oscillatory modes are also made.

1. Introduction

Several authors have studied the instability of two plane interface separating
two Newtonian fluids where one is accelerated towards the other or when one
is superposed over the other. Chandrasekhar [1] has discussed the theoretical
and experimental results on the onset of thermal instability (B’enard convection)
in a fluid layer under varying assumptions of hydrodynamics. Bhatia [2] has
considered the Rayleigh-Taylor instability of two viscous superposed conducting
fluids in the presence of a uniform horizontal magnetic field. Kumar [3] have
studied the problem of Rayleigh-Taylor instability of Rivlin-Ericksen elastico-
viscous fluid in the presence of suspended particles through porous medium
and found that in the case of two uniform elastico-viscous fluids separated by
a horizontal boundary and exponentially varying density, the perturbation decay
with time for potentially stable configuration/stable stratification and grow with
time for potentially unstable configuration/unstable stratification.
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With the growing importance of non-Newtonian fluids in the modern
technology and industries, the investigations of such fluids are desirable. Rivlin-
Ericksen [4] is an important class of visco-elastic fluids. Khan and Bhatia [5]
have considered the problem of stability of two superposed visco-elastic fluids
in a horizontal magnetic field and found that elasticity has a stabilizing effect
and viscosity has a destabilizing effect on the growth rate of unstable mode of
disturbances. Kumar and Lal [6] have studied the stability of two superposed
Rivlin-Ericksen viscous-viscoelastic fluids and found that both kinematic viscosity
and kinematic viscoelasticity have stabilizing effect.

Recent spacecraft observations have confirmed that the dust particles play an
important role in the dynamics of atmosphere as well as in the diurnal and surface
variations in the temperature of the Martin weather. It is, therefore, of interest
to study the presence of dust particles in astrophysical situation. The problem of
stability of stratified visco-elastic Walter’s (Model B′) dusty fluid in porous medium
has been studied by Rajbahadur and Pundir [7] and found that the system is
stable for β < 0 and unstable for β > 0 under certain conditions. The Rayleigh-
Taylor instability of two superposed couple-stress fluids of uniform densities in a
porous medium in the presence of a uniform horizontal magnetic field is studied by
Sunil, Sharma and Chandel [8] and found that magnetic field stabilizes a certain
wave number range k > k∗, which is unstable in the absence of the magnetic
field. Kumar, Mohan and Singh [9] have studied the stability of two superposed
viscoelastic fluid-particle mixtures and found that system is stable or unstable for

the wave number range k ≤ or >
1p
2v′

depending on the kinematic viscoelasticity

v′. The problem of stability of superposed visco-elastic (Walters B′) fluids in
the presence of suspended particles through porous medium has been studied
by Kumar and Sharma [10] and found that for the unstable configuration, the
magnetic field and viscoelasticity have a stabilizing effect. Kumar and Singh [11]
have studied the stability of two superposed Rivlin-Ericksen visco-elastic fluids in
the presence of suspended particles. It is found that system is stable for stable
configuration and unstable for unstable configuration.

The present paper is devoted to the consideration of hydromagnetic stability of
two superposed Rivlin-Ericksen visco-elastic fluids in the presence of suspended
particles. Since the Rivlin-Ericksen visco-elastic fluid plays a significant role in
industrial application, it would be of much interest to examine the stability
conditions of Rivlin-Ericksen fluid. Since the stability of two superposed Rivlin-
Ericksen visco-elastic dusty fluids in the presence of magnetic field seems to the
best of our knowledge uninvestigated so far. Hence, in this paper, we shall discuss
the effect of magnetic field on stability of two superposed Rivlin-Ericksen visco-
elastic fluids in the presence of suspended particles.
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2. Notations

ρ Density of fluid,

µ Coefficient of viscosity,

µ′ Coefficient of viscoelasticity,

µe Magnetic permeability,

∂ Curly operator,

∇ Del operator,

β Constant,

v Kinematic viscosity (µ/ρ),
v′ Kinematic viscoelasticity (µ′/ρ),
p Fluid pressure,

g(0, 0,g) Acceleration due to gravity,

H(H, 0, 0) Magnetic field vector having components (H, 0, 0),
δρ Perturbation in density ρ(z),
δp Perturbation in pressure, p(z) ,

q(u, v, w) Perturbation in fluid velocity q(0, 0, 0),
qd(l, r, s) Perturbations in particle velocity qd(0, 0, 0)
h(hx , hy , hz) Perturbation in magnetic field H(H, 0, 0),
kx , ky Wave numbers in x and y directions respectively,

k =
Æ

k2
x + k2

y Wave number of the disturbance,

n Growth rate of disturbance,

V 2
A Square of the Alfven velocity

�
V 2

A =
µeH

2

4π

�
,

ρ0, v0, v′0,µ0,µ′0, N0 Constants,

π Constant value,

D Derivative with respect to z
�
=

d

dz

�

3. Formulation of the problem

Let Ti j ,τi j , ei j ,δi j , qi , x i , p,µ and µ′ denote respectively, the stress tensor, shear
stress tensor, rate of strain tensor, Kronecker delta, velocity vector, position vector,
isotropic pressure, viscosity and visco-elasticity. The constitutive relations for the
Rivlin-Ericksen visco-elastic fluid are

Ti j =−pδi j +τi j ,

τi j = 2
�
µ+µ′

∂

∂ t

�
ei j

and ei j =
1

2

�
∂ qi

∂ x j
+
∂ q j

∂ x i

�
.





(3.1)



102 Vivek Kumar and Abhilasha

Consider a static state in which an incompressible, visco-elastic Rivlin-Ericksen
fluid layer containing suspended particles of variable density is arranged in
horizontal strata and the pressure p and density ρ are functions of vertical
coordinate z only. The fluid layer is under the action of gravity g(0, 0,−g) and
the horizontal magnetic field H(H, 0, 0). The particles are assumed to be non-
conducting.

Let q(u, v, w), ρ and p denote respectively the velocity, density and pressure
of the hydromagnetic fluid. qd( x̄ , t) and N( x̄ , t) denote the velocity and number
density of particles, respectively. K = 6πµη, where η particle radius, is a constant
and x̄ = (x , y, z). Then the equation of motion and continuity for the Rivlin-
Ericksen visco-elastic fluid are

ρ

�
∂ q

∂ t
+ (q · ∇)q

�
=−∇p+ gρ+

�
µ+µ′

∂

∂ t

�
∇2q

+KN(qd − q) +
µe

4π
[(∇×H)×H] , (3.2)

∇ · q= 0, (3.3)
∂ ρ

∂ t
+ (q · ∇)ρ = 0, (3.4)

∂H

∂ t
= (H · ∇)q− (q · ∇)H (3.5)

and

∇ ·H= 0 , (3.6)

where µe, the magnetic permeability is assumed to be constant and fluid is
assumed to be infinitely conducting.

The presence of particles adds an extra force term, proportional to the velocity
difference between particles and appears in equations of motion (3.2). Since the
force exerted by the fluid on the particles is equal and opposite to the exerted by
the particles on the fluid, there must be an extra force term, equal in magnitude
but opposite in sign, in the equation of motion for the particles. The buoyancy
force on the particles is neglected. Interparticle reactions are not considered for
we assume that the distance between particles is quite large as compared with
their diameter. The equations of motion and continuity for the particles, under the
above approximation, are

mN
�
∂ qd

∂ t
+ (qd · ∇)qd

�
= KN(q− qd) (3.7)

and

∂ N

∂ t
+∇ · (Nqd) = 0 , (3.8)

where mN is the mass of the particles per unit volume.
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4. Perturbation equations and normal mode analysis

The time dependent solution of (3.2) to (3.8) known as the basic state,
whose stability we wish to examine is that of an incompressible, Rivlin-
Ericksen viscoelastic fluid layer of variable density arranged in horizontal strata.
The character of equilibrium is examined by supposing that the system is slightly
disturbed and then by following its further evolution.

Let δρ, δp, q(u, v, w), qd(l, r, s) and h(hx , hy , hz) denote respectively the
perturbations in the hydromagnetic fluid density ρ, pressure p, velocity q(0, 0, 0),
particles velocity qd(0, 0, 0) and the magnetic field H(H, 0, 0). Then the linearized
perturbation equations are

ρ
∂ q

∂ t
=−∇δp+ gδρ+

�
µ+µ′

∂

∂ t

�
∇2q

+KN0(qd − q) +
µe

4π
[(∇× h)×H], (4.1)

∇ · q= 0 , (4.2)
∂

∂ t
δρ =−w(Dρ) , (4.3)

�
m

K

∂

∂ t
+ 1
�

qd = q , (4.4)

∂M

∂ t
+∇ · qd = 0 , (4.5)

∂ h

∂ t
= (H · ∇)q (4.6)

and

∇ · h= 0, (4.7)

where M = N/N0 and N , N0 respectively stands for initial uniform number density
and perturbation in number density.

Analyzing the perturbations into normal modes, we seek the solution whose
dependence on x , y and t is given by

exp(ikx x + iky y + nt), (4.8)

where kx and ky are the horizontal components of the wave number, k =
Æ

k2
x + k2

y

is the resultant wave number and n is the growth rate, which is, in general, a
complex constant.

With the dependence of physical variables on x , y and t and following the usual
procedure, we get

n(1+τn)[D(ρDw)−ρk2w] + n[D(mN0Dw)−mN0k2w]

+
gk2

n
Dρ(1+τn)w− (µ+µ′n)(1+τn)(D2 − k2)2w

+
µeH

2k2
x

4πn
(1+τn)(D2 − k2)w = 0, (4.9)
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where τ= m/K and D = d/dz.

5. Results and discussion

5.1. Two superposed visco-elastic fluids separated by a horizontal boundary

In this section, we consider the case of two superposed visco-elastic fluids of
uniform density ρ1 and ρ2, uniform viscosities µ1 and µ2, uniform viscoelasticities
µ′1 and µ′2 are separated by a horizontal boundary at z = 0. The subscripts 1 and 2
respectively, distinguish the upper and lower fluid. Then in each region of constant
ρ,µ and µ′, equation (4.9) gives

(D2 − k2)(D2 − s2)w = 0, (5.1)

where s2 = k2+
n

v + v′n
+

mnN0

(1+τn)(µ+µ′n)
+

µeH
2k2

x

4πn(µ+µ′n)
, and v =

µ

ρ
, v′ =

µ′

ρ
are respectively the kinematic viscosity and kinematic viscoelasticity.

Since w must vanish both when z → +∞ (for upper fluid) and z → −∞ (for
lower fluid), the general solution of equation (5.1) is given by

w1 = A1ekz + Bes1z (z < 0) (5.2)

and

w2 = Ce−kz + De−s2z (z > 0) , (5.3)

where A, B, C and D are constant of integration and

s2
1 = k2 +

n

v1 + nv′1
+

mnN0

ρ1(v1 + nv′1)(1+τn)
+

µeH
2k2

x

4πnρ1(v1 + nv′1)
(5.4)

and

s2
2 = k2 +

n

v2 + nv′2
+

mnN0

ρ2(v2 + nv′2)(1+τn)
+

µeH
2k2

x

4πnρ2(v2 + nv′2)
. (5.5)

Here, it is assumed that s1 and s2 are so defined that the real parts of s1 and s2

are positive.
The boundary conditions to be satisfied here at z = 0 are:

w, (5.6)

Dw (5.7)

and

(µ+µ′n)(D2 + k2)w (5.8)

must be continuous across the interface between two fluids. Integrating equation
(4.9) across the interface at z = 0, we get

[ρ2Dw2 −ρ1Dw1]z=0 +
mN0

(1+τn)
[Dw2 − Dw1]z=0

− 1

n
[(µ2 +µ

′
2n)(D2 − 2k2)Dw2 − (µ1 + nµ′1)(D

2 − 2k2)Dw1]z=0

+
gk2

n2 (ρ2 −ρ1)w0 +
µeH

2k2
x

4πn2 [Dw2 − Dw1]z=0 = 0 , (5.9)
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where w0 is the common value of w1 and w2 at z = 0.
Applying the boundary conditions (5.6) to (5.9) to the solutions (5.2) and (5.3),

we get

A+ B = C + D, (5.10)

kA+ S1B =−kC − s2D, (5.11)

(µ1 + nµ′1)[2k2A+ (s2
1 + k2)B] = (µ2 + nµ′2)[2k2C + (s2

2 + k2)D] (5.12)

and

A

�
gk

2n2 (ρ2 −ρ1)−ρ1 −
mN0

(1+τn)
− (µ1 + nµ′1)

n
k2 − k2

x V 2
A

n2

�

+B

�
gk

2n2 (ρ2 −ρ1)−
(µ1 + nµ′1)

n
ks1

�

+C

�
gk

2n2 (ρ2 −ρ1)−ρ2 −
mN0

(1+τn)
− (µ2 +µ′2n)

n
k2 − k2

x V 2
A

n2

�

+D

�
gk

2n2 (ρ2 −ρ1)−
(µ2 + nµ′2)

n
ks2

�
= 0 , (5.13)

where V 2
A =

µeH
2

4π
.

On solving the equations (5.10) to (5.13), we get the fourth order determinate�������������

1 1 −1 −1

k s1 k s2

2k2(µ1 + nµ′1) (s2
1 + k2)(µ1 + nµ′1) −2k2(µ2 + nµ′2) −(s2

2 + k2)(µ2 + nµ′2)




gk
2n2 (ρ2 −ρ1)−ρ1 − mN0

(1+τn)

− (µ1+nµ′1)
n

k2 − k2
x V2

A
n2







gk
2n2 (ρ2 −ρ1)

− (µ1+nµ′1)
n

ks1







gk
2n2 (ρ2 −ρ1)−ρ2 − mN0

(1+τn)

− (µ2+µ
′
2n)

n
k2 − k2

x V2
A

n2







gk
2n2 (ρ2 −ρ1)

− (µ2+nµ′2)
n

ks2




�������������

= 0.

(5.14)

The above determinate can be reduced into third order determinate by subtracting
the first column from the second, third column from the fourth and adding first
and third column, we get��������������

s1 − k 2k s2 − k

�
nρ1 +

mnN0
(1+τn)

+
k2

x V2
A

n

�
2k2{ρ1(ν1 + nν ′1)−ρ2(ν2 + nν ′2)} −

�
nρ2 +

mnN0
(1+τn)

+
k2

x V2
A

n

�




ρ1 +
mN0
(1+τn)

− (µ1+nµ′1)
n

k(s1 − k)

+
k2

x V2
A

n2







gk
2n2 (ρ2 −ρ1)− (ρ1 +ρ2)

− 2mN0
(1+τn)

− k2

n
{ρ2(ν2 + nν ′2)

+ρ1(ν1 + nν ′1)} −
2k2

x V2
A

n2







ρ2 +
mN0
(1+τn)

− (µ2+µ
′
2n)

n
k(s2 − k)

+
k2

x V2
A

n2




��������������

= 0. (5.15)

The determinate (5.15) is quite complicated since the value of s1 and s2 involve
square roots. For convenience, we assume that the kinematic viscosities and
kinematic viscoelasticities of the two fluids are same, i.e., v1 = v = v2, v′1 = v′ = v′2
and that the fluids are of high viscosity and high visco-elasticity.
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Under the above assumptions, we have

s1 − k =
n

2k(v + v′n)
+

mnN0

2kρ1(v + nv′)(1+τn)
+

k2
x V 2

A

2nkρ1(v+ nv′)

and

s2 − k =
n

2k(v + v′n)
+

mnN0

2kρ2(v + nv′)(1+τn)
+

k2
x V 2

A

2nkρ2(v+ nv′)
.

Using the values of s1 − k and s2 − k in the determinate (5.15) and other
simplification (by Mathematica software), we obtain

A9n9 + A8n8 + A7n7 + A6n6 + A5n5 + A4n4 + A3n3 + A2n2 + A1n+ A0 = 0, (5.16)

where

A9 = 2k2v′τ3ρ1ρ2(ρ1 +ρ2),

A8 = 2k2mv′τ2N0(ρ1 +ρ2)
2 + 2mN0τ

2ρ1ρ2

+2k2τ2ρ1ρ2(τv + 3v′)(ρ1 +ρ2) ,

A7 = 2τm2N2
0 (1+ k2v′)(ρ1 +ρ2) + 4τmN0ρ1ρ2

+τ3ρ1ρ2{2k2
x V 2

A + gk(ρ1 −ρ2)}

+6τk2ρ1ρ2(τv + v′)(ρ1 +ρ2)

+2τk2(τ2v′k2
x V 2

A + 2v′mN0 +τvmN0)(ρ1 +ρ2)
2 ,

A6 = 2τ2k2k2
x V 2

A (τv + 3v′)(ρ1 +ρ2)
2

+2k2mN0(2τv+ v′)(ρ1 +ρ2)
2

+2m2N2
0 (1+ k2v′)(ρ1 +ρ2) + 2k2ρ1ρ2(3τv+ v′)(ρ1 +ρ2)

+2τ2mN0k2
x V 2

A (1+ 2k2v′)(ρ1 +ρ2) + 2τνk2m2N2
0 (ρ1 +ρ2)

+2mN0(ρ1ρ2 +m2N2
0 ) + (3τ

2ρ1ρ2 +τ
2

×mN0(ρ1 +ρ2){2k2
x V 2

A + gk(ρ1 −ρ2)} ,

A5 = 2τ3k4
x V 4

A (1+ k2v′)(ρ1 +ρ2) + 4τk2mN0k2
x V 2

A (τv + 2v′)(ρ1 +ρ2)

+2k2vmN0(ρ1 +ρ2)
2 + 6τk2k2

x V 2
A (τv + v′)(ρ1 +ρ2)

2

+ gkτ3k2
x V 2

A (ρ
2
1 +ρ

2
2) + 2mN0(k

2vmN0 + 2τk2
x V 2

A )(ρ1 +ρ2)

+2k2vρ1ρ2(ρ1 +ρ2) + 4τm2N2
0 k2

x V 2
A

+ {2τmN0(ρ1 +ρ2) + 3τρ1ρ2 +τm2N2
0 }{2k2

x V 2
A + gk(ρ1 −ρ2)} ,
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A4 = 4k2mN0k2
x V 2

A (2τv + v′)(ρ1 +ρ2) + 2k2k2
x V 2

A (3τv + v′)(ρ1 +ρ2)
2

+2τ2k2k4
x V 4

A (τv + 3v′)(ρ1 +ρ2) + 2mN0k2
x V 2

A (gkτ2 + 1)(ρ1 +ρ2)

+2mN0k2
x V 2

A (2mN0 + 3τ2k2
x V 2

A )

+ {mN0(ρ1 +ρ2) +ρ1ρ2 +m2N2
0 + 3τ2k2

x V 2
A (ρ1 +ρ2)}

×{2k2
x V 2

A + gk(ρ1 −ρ2)} ,

A3 = 6τk2k4
x V 4

A (τv + v′)(ρ1 +ρ2) + 2k2vk2
x V 2

A (ρ1 +ρ2)
2

+12τmN0k4
x V 4

A + 4kmN0k2
x V 2

A (gτ+ vk)(ρ1 +ρ2)

+ {3τk2
x V 2

A (ρ1 +ρ2) +τ
3k4

x V 4
A }{2k2

x V 2
A + gk(ρ1 −ρ2)} ,

A2 = 2k2k4
x V 4

A (3τv+ v′)(ρ1 +ρ2) + 2mN0k4
x V 4

A

+ {k2
x V 2

A (ρ1 +ρ2) + 3τ2k4
x V 4

A + 2mN0k2
x V 2

A }{2k2
x V 2

A + gk(ρ1 −ρ2)} ,

A1 = 2k2vk4
x V 4

A (ρ1 +ρ2) + 3τk4
x V 4

A {2k2
x V 2

A + gk(ρ1 −ρ2)} ,

A0 = k4
x V 4

A {2k2
x V 2

A + gk(ρ1 −ρ2)} .
Theorem 5.1. For potentially stable configuration (ρ1 > ρ2), the system is always
stable.

Proof. If ρ1 > ρ2, equation (5.16) does not involve any change of sign and so does
not admit any positive value of n. Therefore, the system is stable for disturbances
of all wave numbers.

Theorem 5.2. For the potentially unstable configuration (ρ1 < ρ2), the system is
stable provided 2k2

x V 2
A > gk(ρ1 −ρ2).

Proof. If ρ1 < ρ2 and 2k2
x V 2

A > gk(ρ1−ρ2), then equation (5.16) does not involve
any change of sign and so does not allow any positive value of n. Therefore, the
system is stable.

Theorem 5.3. For potentially unstable configuration (ρ1 < ρ2), the system is
unstable provided 2k2

x V 2
A < gk(ρ1 −ρ2).

Proof. If ρ1 < ρ2 and 2k2
x V 2

A < gk(ρ1 − ρ2), then the constant term in equation
(5.16) is negative. Therefore allow at least one change of sign and so has at least
one positive root. The occurrence of a positive root implies that system is unstable.

5.2. Case of exponentially varying density, viscosity, viscoelasticity, magnetic field
and particle number density

Let us assume that

ρ = ρ0eβz , N0 = N1eβz , µ= µ0eβz , H2 = H2
1 eβz and µ′ = µ′eβ2 , (5.17)
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where ρ0, N1, µ0, H1, µ′0 and β are constants. Substituting the values of ρ, N1,µ,µ′

and H in equation (4.9), we obtain
�

n+
mnN1

ρ0(1+τn)
− (v0 + v′0n)(D2 − k2) +

k2
x V 2

A

n

�
(D2 − k2)w

+
gβk2

n
w = 0 , (5.18)

where v0 =
µ0

ρ0
and v′0 =

µ′0
ρ0

.

Consider the case of two free boundaries. The boundary conditions for the case
of two free surfaces are

w = 0, D2w = 0 at z = 0 and z = d . (5.19)

The proper solution of equation (5.18) satisfying equation (5.19) is given by

w = Asin
mπz

d
, (5.20)

where A is a constant and m is any integer. Using equation (5.20), equation (5.18)
gives

n3[τ(1+ v′0 L)] + n2
��

1+
mN1

ρ0
+ (v′0 +τv0)L

��

+n

�
v0 L +τ

�
k2

x V 2
A −

gβk2

L

��
+

�
k2

x V 2
A −

gβk2

L

�
= 0 . (5.21)

Theorem 5.4. For stable density stratification (β < 0), the system is always stable.

Proof. For stable stratification (β < 0), equation (5.21) does not involve any
change of sign and so does not admit any positive value of n. Therefore, the system
is stable for disturbances of all wave numbers.

Theorem 5.5. For β > 0, the system is stable or unstable provided k2
x V 2

A > or

<
gβk2

L
.

Proof. If β > 0 and k2
x V 2

A >
gβk2

L
, then equation (5.21) does not involve any

change of sign and so does not admit any positive value of n. Therefore, the system
is stable for disturbances of all wave numbers.

On the other hand, if β > 0 and k2
x V 2

A <
gβk2

L
, then the constant term in

equation (5.21) is negative. Therefore allow at least one change of sign and so has
at least one positive root. The occurrence of a positive root implies that the system
is unstable.
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5.2.1. Discussion of oscillatory modes.
Equation (5.21) can be written as

An3 + Bn2 + Cn+ D = 0, (5.22)

where A= τ(1+ v0 L), B = 1+
mN1

ρ0
+ (τv0 + v′0)L, V = v0 L +τ

�
k2

x V 2
A −

gβk2

L

�

and D = k2
x V 2

A −
gβk2

L
.

After dividing by n, the real and imaginary parts of equation (5.22) are

A(n2
r − n2

i ) + Bnr + C +
Dnr

|n|2 = 0 (5.23)

and

ni

�
2Anr + B− D

|n|2
�
= 0. (5.24)

Theorem 5.6. For β < 0, the estimate of n for the growth rate of oscillatory stable

modes is given by |n|2 > D

B
.

Proof. If β < 0, then the value of B and D are definite positive. Since modes are
oscillatory (ni 6= 0) and if nr is negative (for stable mode), then for the consistency

of equation (5.24), we must have |n|2 > D

B
. Hence, for β < 0, the estimate of n

for the growth rate of oscillatory stable modes is given by |n|2 > D|B.

Theorem 5.7. For β < 0, the estimate of n for the growth rate of oscillatory unstable

modes is given by |n|2 < D

B
.

Proof. If β < 0, then the value of B and D are definite positive. Since the modes
are oscillatory (ni 6= 0) and if nr is positive (for unstable mode), then for the

consistency of equation (5.24), we must have |n|2 < D

B
. Hence, for β < 0, the

estimate of n for the growth rate of oscillatory unstable modes is given by |n|2 < D

B
.

Theorem 5.8. For β > 0 and k2
x V 2

A >
gβk2

L
, the estimate of n for the growth rate of

oscillatory stable or unstable modes are respectively given by |n|2 > D

B
or |n|2 < D

B
.

Proof. If β > 0 and k2
x V 2

A >
gβk2

L
, the value of A, B and D are positive definite.

Since modes are oscillatory (ni 6= 0) and stable (nr < 0), then equation (5.24)

gives |n|2 > D

B
. Also, for oscillatory unstable modes (ni 6= 0, nr > 0), we must have

for the consistency of equation (5.24) as |n|2 < D

B
under the given conditions.
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5.2.2. Discussion of non-oscillatory modes.
For non-oscillatory modes, we must have ni = 0, then equation (5.22) becomes

An3
r + Bn2

r + Cnr + D = 0 (5.25)

where A= τ(1+ v′0 L), B = 1+
mN1

ρ0
+ (τv0 + v′0)L, C = v0 L +τ

�
k2

x V 2
A −

gβk2

L

�

and D = k2
x V 2

A −
gβk2

L
.

Theorem 5.9. For β < 0, the non-oscillatory modes are always stable.

Proof. If β < 0, then equation (5.25) does not involve any change of sign and
therefore does not allow any positive root. Therefore, the non-oscillatory modes
are stable for all wave numbers according to the given condition.

Theorem 5.10. For β > 0, the non-oscillatory modes are stable provided k2
x V 2

A >

gβk2

L
.

Proof. For β > 0 and k2
x V 2

A >
gβk2

L
, equation (5.25) does not involve any

change of sign and therefore does not allow any positive root. Therefore, the non-
oscillatory modes are stable.

Theorem 5.11. For β > 0, the non-oscillatory modes are unstable provided k2
x V 2

A <

gβk2

L
.

Proof. For β > 0 and k2
x V 2

A <
gβk2

L
, the value of D is negative. Therefore,

equation (5.25) involves at least one change of sign so has at least one positive
root. Therefore, the non-oscillatory modes are unstable.

Theorem 5.12. For β > 0 and k2
x V 2

A <
gβk2

L
, there are wave propagating for a

given wave number.

Proof. Let the roots of equation (5.25) are nr1
, nr2

, nr3
, then using the theory of

equations, we get

nr1
· nr2
· nr3
=−D

A
> 0

and

nr1
· nr2
· nr3
=−B

A
< 0.

Clearly, when β > 0 and k2
x V 2

A <
gβk2

L
, then D is definite negative. Also, A and B

are positive definite. So the product of the roots is positive and the sum of the roots
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is negative. Therefore, the possibility that all the three non-oscillatory modes can
be unstable is ruled out. It follows that two waves of propagation are damped and
one is amplified for a given wave number.

6. Conclusion

The stability of superposed fluids under varying assumptions of hydromagnetics
has been discussed in details by Chandrasekhar [1]. With the growing importance
of non-Newtonian fluids in modern technology and industries, the investigations
on Rivlin-Ericksen visco-elastic fluid are desirable. In the present paper, the
stability of Rivlin-Ericksen visco-elastic dusty fluid in the presence of magnetic field
is considered. For potentially stable configuration, the system is found to be stable
for disturbances of all wave numbers. The magnetic field succeeds in stabilizing
certain wave-number range, for the potentially unstable configuration. The case of
exponentially varying density, viscosity, viscoelasticity, magnetic field and particle
number density is also considered. For stable density stratification, the system
is found to be stable for disturbances of all wave numbers. The magnetic field
succeeds in stabilizing the potentially unstable stratifications for a certain wave-
number range which were unstable in the absence of the magnetic field. It is also
found that for β < 0, the non-oscillatory modes are always stable and for β > 0,
the non-oscillatory modes are stable or unstable under certain conditions.
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