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Abstract. In the present study an unsteady convective diffusive mass transfer in a flow of viscoelastic
fluid flow in a concentric annulus with applied magnetic field is considered. The velocity is analytically
obtained using no-slip condition. The species equation is solved by adopting a dispersion model used by
Gill and Sankarasubramanian approach. The parameters like dispersion and convection coefficients
which arise in the analysis are plotted against absorption parameter for different values of Hartmann
number and viscoelastic parameter. The effect of viscoelastic parameter is to increase the convective
coefficient and dispersion coefficient. Dispersion increases with absorption but convection decreases.
The results are numerically evaluated and graphically depicted.
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1. Introduction
Many researchers have analysed dispersion of solute in physiological fluids involving interphase
mass transfer. Taylor [14] and Aris [2] have studied the dispersion of passive traces in circular
tube. Sankarasubramanian and Gill [12] have used analytical methods to study dispersion with
interphase mass transfer. DeGance and Johns [6] have shown that transport coefficients were
functions of time. Lungu and Moffat [9], Clifford et al. [4], and Boddington and Clifford [3] have
analysed the solute transfer by considering straight tubes.
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A study of dispersion of a solute is done by Jayaraman et al. [7], where a curved tube with
absorbing wall is considered. Nagarani [11], Agarwal and Jayaraman [1] and Sharp [13] have
studied the dispersion in non-Newtonian fluids. Gill and Sankarasubramanian model [12] is
used by Dash et al. [5] to study shear augmented dispersion in casson fluid flow. Jiang and Grot
Berg [8] have analysed the effect of oscillatory field on tube.

In the present study, an analytical solution has been obtained for species equation with
effect of viscoelastic fluid and magnetic field applied on a concentric annulus.

2. Mathematical Formulation
Physical configuration consists of a catheter of radius kR is inserted in the artery of radius R
as given in Figure 1. The flow is assumed to be fully developed and r

2 ¿ 1.

Figure 1. Physical configuration

The stress obeys the constitutive equation,

s = µ

1+λ1
{ṙ+λ2 r̈} , (2.1)

where µ is viscosity, ṙ is rate of strain, λ1 is ratio of relaxation and λ2 is the ratio of retardation
time.

Using non-dimensional parameters r∗ = r
R , u∗ = u

u0
and assuming fully developed steady

flow with low Reynolds number following Nadeem and Akbar [10], the governing equations for
velocity will be,

1
r
∂

∂r

[
µ r

1+λ1

∂w
∂r

]
−M2w = ∂p

∂z
, (2.2)

subject to no-slip conditions at the boundaries.
Solving the above equation the velocity is obtained as

w = AI0

(
M

√
1+λ1 r

)
+BK0

(
M

√
1+λ1 r

)
+ P

M2 , (2.3)

where A = B1−B2
B2 A1−B1 A2

, B = A1−A2
A2B1−A1B2

, A1 = I0
(
M

p
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)
, A2 = I0

(
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p
1+λ1 k

)
,
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)
, B2 = K0

(
M

p
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)
.

The species equation is
∂c
∂t

+w
∂c
∂z

= D
(
∂2c
∂z2 + ∂2c

∂r2 + 1
r
∂c
∂r

)
, (2.4)
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subject to conditions

c(0, r, z)= c0,

∂c
∂r

=
{

0 at r = kR
−αc at r = R .

(2.5)

In equation (2.5), negative sign is due to diffusion across the boundary resulting in loss of solute.
Non-dimensionalising the equations (2.4) and (2.5) using the quantities c∗ = c

c0
, t∗ = t

R2/D ,
r∗ = r

R and z∗ = z
D/R2w0

, we get

∂c
∂t

+w
∂c
∂z

= ∂2c
∂r2 + 1

r
∂c
∂r

+ 1
Pe2

∂2c
∂z2 , (2.6)

subject to c(0, r, z)= δ(z)
Pe , where δ(z) — Dirac delta function, Pe — Peclet number, such that

∂c
∂r

=
{

0 at r = k
−β0c at r = 1 .

(2.7)

Following Jayaraman et al. [7], concentration is assumed as

c(r, t, z)=∑
fn(t, r)

∂nθm

∂zn (2.8)

and

θm =
∫ 2π

0
∫ 1

k rc dr dθ∫ 2π
0

∫ 1
k r dr dθ

= 2
(1−k2)

∫ 1

k
rc dr, (2.9)

where θm is the mean concentration.
The generalised dispersion model of Sankarasubramanian and Gill [12], the governing

equation in truncated form can be written by,
∂θm

∂t
= M0 (t) θm +M1 (t)

∂θm

∂z
+M2 (t)

∂2c
∂z2 . (2.10)

Using equation (2.10), substituting for ∂θm
∂t from equation (2.8), we can find

∂ fn

∂t
− ∂2 fn

∂r2 − 1
r
∂ fn

∂r
+w fn−1 − 1

Pe2δn,2 fn−2 +
n∑

i=0
fn−1Mi = 0 (2.11)

and

Mn (t)= 2
(1−k2)

∂ fn

∂r
(t,1)+ δn,2

Pe2 − 2
(1−k2)

∫ 1

k
r w fn−1 dr . (2.12)

Similarly, the boundary conditions becomes

∂ fn

∂r
=

{
0 if r = k

−β fn if r = 1 .
(2.13)

Solving equations (2.10) and (2.11), the exchange coefficient takes the form

M0 (t)= 2
(1−k2)

(
∂ f0

∂r

)
r=1

(2.14)

and
∂ f0

∂t
− 1

r
∂

∂r

(
∂ f0

∂r
r
)
+ f0M0 = 0. (2.15)
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Using f0(t, r)= e−
∫ t

0 M0(η)g0(η,r)dη and solving the resulting equation using separation of variables
method, we get

g0(t, r)=∑ An

J1(µnk)
e−µ

2
n t[a1 −a2] (2.16)

and

An = J1(µnk)[1−k2]µ2
n
∫ 1

k r En(µnr)B1(r)dr

(µ2
n +β2)[En(µn)]2 −µ2

nk2[En(µnk)]2
∫ 1

k r B1(r)dr
, (2.17)

where En(µnr)= a1 −a2, and µn are eigen values of the equation,

µn[a3 −a4]+β0 [a5 −a6]= 0. (2.18)

Using equations (2.16) and (2.17), we get

M0(t)=
−∑ An

J1(µnk) e−µ
2
n tµn[a4 −a3]∑ An

J1(µnk) e−µ2
n t[a4 −a3]

, (2.19)

where a1 =Y0(µnr)J1(µnk), a2 =Y1(µnk)J0(µnr), a3 =Y1(µnk)J1(µn), a4 =Y1(µn)J1(µnk),
a5 =Y0(µn)J1(µnk), a6 =Y1(µnk)J0(µn).

At large time t →∞, following asymptotic values are obtained

M0 (∞)=−µ2
0 . (2.20)

Solving for f1 assuming large time, we have
∂2 f1

∂r2 + 1
r
∂ f
∂r

+µ0 f1 = w f0 +M1 f0 (2.21)

and

M1 =− 1
(1−k)2

{
β f1(1)+

∫ 1

k
r w f0 dr

}
, (2.22)

subjected to the conditions ∂ f1
∂r (r)=−β f1(r) and ∂ f1

∂r (k)= 0.
Multiplying equation (2.22) by r E0(M0r) and integrating from k to 1 with respect to r, we

get

f1(r)=
∞∑

n=0

A1nEn(µnr)
J1(µnk)

, (2.23)

M1 =
−4µ0[b1 −b2]

∫ 1
k r wE0(µ0r)dr

(1−k2)[(µ2
0 +β2){E0(µ0)}2 −k2µ2

0{E0(µ0k)}2]
, (2.24)

where b1 =Y1(µ0)J1(µ0k), b2 = J1(µ0)Y1(µ0k), and

A1n =


∫ 1

k [w(r)+µ0] r En(µnr) f0(r)dr
J1(µnk)[µ2

n−µ2
0]

for n ≥ 1
−J1(µ0k)∫ 1

k r E0(µ0r) f0(r)dr

∑ A1n
J1(µnk)

∫ 1
k r En(µnr)dr for n = 0 .

(2.25)

Similarly, solving for M2, we get

M2 = 1
Pe2 −

∫ 1
k r (w+M1) f1E0(µ0r)dr∫ 1

k r f0 E0(µ0r)dr
. (2.26)
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3. Results and Discussions
Topical study deals with chemically active traces in the fluid flow through concentric annular
region bounded by relative boundary. The effects of magnetic field, viscoelasticity on convection
and dispersion coefficients are analysed. M0 is assumed to be independent of velocity.

(a) (b)

Figure 2. Plot of Exchange coefficient vs. Absorption parameter

Figure 2(a) gives the plot of convection coefficient against the absorption coefficient β for
different values of relaxation parameter λ. The convection coefficient decreases with increasing
absorption parameter β. As λ increases fluid looses the elasticity there-by increasing velocity
results in more solute getting convected. λ= 0.5 shows both properties of viscosity and elasticity,
hence initially the value is less and then shoots up faster.

The dispersion coefficient is plotted against β in Figure 2(b), which shows different pattern.
Moderate relaxation parameter shows higher dispersion for large absorption parameter β, but
when β is small, values of M1(t) for λ = 0.5 is in between λ = 1.0 and λ = 0.1 but later β > 2
shows high value compared to λ= 1.0 or λ= 0.1. As λ increases to 1.0 the dispersion coefficient
decreases for all values of β showing effect of convection. Dispersion is less due to the fact that
more solute gets convected to the wall and there is a loss of solute.

(a) (b)

Figure 3. Plot of Exchange coefficient vs. Absorption parameter
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Figures 3(a) and 3(b) shows the effect of magnetic field on convection and dispersion
coefficients respectively against absorption parameter β. As M increases the convection
increases and dispersion decreases. Magnetic field results in making velocity pulsatile which
reduces convection but due to accumulation of solute, dispersion will be more.

(a) (b)

Figure 4. Plot of Exchange coefficient vs. Absorption parameter

Figures 4(a) and 4(b) depicts the effect of reaction parameter. The effect is to decrease
convection and increase in dispersion as increase in α results in loss of solute. More solute gets
convected to the outer boundary as α increases due to osmotic pressure.

4. Conclusions
Diffusion coefficient is not affected by velocity. Hence the study does not focus on this. Effect
of viscoelasticity is more on dispersion coefficient than convection coefficient. Magnetic field
affects both convection and dispersion coefficients but the effect is reverse. Reaction rate at the
wall increases dispersion.
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