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1. Introduction
The existence of a fixed point is of paramount importance in several areas of mathematics
and other sciences. Fixed point results provide conditions under which maps have solutions.
The theory itself is a beautiful mixture of analysis (pure and applied), topology, and geometry.
In particular, fixed point techniques have been applied in such diverse fields as biology, chemistry,
economics, finances, informatics, engineering and physics. Let M be a nonempty subset of a
linear space X , let F(T)= {x ∈ M : Tx = x} denotes the set of fixed points of the mapping T on
M. Let (X ,d) be metric space and let M be a nonempty subset of X . A mapping T : M → M is
said to be nonexpansive, if

d(Tx,T y)≤ d(x, y), (1.1)

for each x, y ∈ M. Define a mapping T on [0,1] by Tx = x
3 , it’s easy to see that T is nonexpansive.

Let (X ,d) be metric space and let M be a nonempty subset of X . A mapping T : M → M is said
to be quasi-nonexpansive, if

d(Tx, p)≤ d(x, p)

for each x ∈ M and p ∈ F(T). Define a mapping T on [0,3] by

Tx =
{

0, x 6= 3,
2, x = 3.

Then F(T) = {0} 6= ; and T is quasi-nonexpansive (see [20]). In the last sixty-five years, the
numerous numbers of researchers attracted in these direction and developed iterative process
has been investigated to approximate fixed point for not only nonexpansive mapping, but also
for some wider class of nonexpansive mappings.

In 1953, Mann [13] has introduced The Mann iteration process is defined as follows: For M
a convex subset of normed space X and a nonlinear mapping T of M into itself, the sequence
{xn} in M is defined by{

x1 = x ∈ M,
xn+1 = (1−αn)xn +αnTxn, n ∈N,

(1.2)

where {αn} is real sequences in (0,1).
In 1974, Ishikawa [6] has introduced The Ishikawa iteration process is defined as follows:

For M a convex subset of normed space X and a nonlinear mapping T of M into itself, the
sequence {xn} and {yn} in M is defined by

x1 = x ∈ M,
xn+1 = (1−αn)xn +αnT yn,
yn = (1−βn)xn +βnTxn, n ∈N,

(1.3)

where {αn} and {βn} are real sequences in (0,1).
In 2007, Agarwal et al. [2] introduced a new iteration process whose rate of convergence

is similar to Picard iteration and faster than other fixed point iteration processes as follows:
For M be a convex subset of a linear space X and T : M → M a mapping. Then the modified
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S-iteration process is a sequence {xn} in M is defined by{
x1 = x ∈ M,
xn+1 = S(xn,αn,βn,Tn), n ∈N,

(1.4)

where {αn} and {βn} are real sequences in (0,1).
In 2008, Suzuki [20] introduced a class of single valued mappings called Suzuki-generalized

nonexpansive mappings (or condition C). The condition C is weaker than nonexpansiveness
and stronger than quasi-nonexpansive, as follows: Let T be a self-mapping on a subset M of a
metric space X . Then T is said to satisfy condition C if

1
2

d(x,Tx)≤ d(x, y)⇒ d(Tx,T y)≤ d(x, y),

for each x, y ∈ M.
It is obvious that every nonexpansive mapping satisfies condition C, but the converse

is not true, that is condition C is weaker than nonexpansiveness and stronger than quasi
nonexpansiveness. The next simple example can show this fact. We see that, if define a mapping
T : [0,3]→ [0,3] by

Tx =
{

0, x 6= 3,
2
3 , x = 3.

Then T is condition C, but T is not nonexpansive (see [20]).
In 2011, Aoyama and Kohsaka [3] introduced the class of α-nonexpansive mappings in

Banach spaces. This class contains the class of nonexpansive mappings and is related to the
class of firmly nonexpansive mappings in Banach spaces as follows: let X be a Banach space
and M be a nonempty subset of X . A mapping T : M → M is said to be α-nonexpansive for some
real number α< 1, if

‖Tx−T y‖ ≤α‖Tx− y‖+α‖T y− x‖+ (1−2α)‖x− y‖, (1.5)

for all x, y ∈ C. Clearly, 0-nonexpansive maps is exactly nonexpansive maps. The next simple
example can show this fact. We see that, let M = [0,4] is a subste of R endowed with the usual
normand usual order. Define T : M → M by

Tx =
{

0; x 6= 4,
2; x = 4.

Then, T is a α-nonexpansive mapping with α≥ 1
2 (see [17]).

In 2011, Sahu [15] has introduced Normal S-iteration Process is defined as follows: For M a
convex subset of normed space X and a nonlinear mapping T of M into itself, the sequence {xn}
and {yn} in M is defined by sequence {xn} in M is defined by

x1 = x ∈ M,
xn+1 = T yn,
yn = (1−αn)xn +αnTxn, n ∈N,

(1.6)

where {αn} is real sequences in (0,1).
In 2014, Kadioglu [7] defined Picard normal S-iteration process (PNS) is defined as follows:

For M a convex subset of normed space X and a nonlinear mapping T of M into itself, the
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sequence {xn}, {yn} and {zn} in M is defined by
x1 = x ∈ M,
xn+1 = T yn,
yn = (1−αn)zn +αnTzn,
zn = (1−βn)xn +βnTxn, n ∈N,

(1.7)

where {αn} and {βn} is real sequences in (0,1). If βn = 0 and αn =βn = 0 in (1.7) then it reduces
to Normal S-iteration process and Picard iteration process, respectively.

In 2014, Abbas and Nazir [1] introduced a new iteration process and proved that it is faster
than all of Picard, Mann and Agarwal et al. processes as follows: For M a convex subset of
normed space X and a nonlinear mapping T of M into itself, the sequence {xn}, {yn} and {zn} in
M is defined by

x1 = x ∈ M,
xn+1 = (1−αn)T yn +αnTzn,
yn = (1−βn)xn +βnTxn,
zn = (1−γn)xn +γnTxn, n ∈N,

(1.8)

where {αn}, {βn} and {γn} are real sequences in (0,1).
In 2017, Pant and Shukla [17] introduced a new type of monotone nonexpansive mappings in

an ordered Banach space X with partial order ≤. This new class of nonlinear mappings properly
contains nonexpansive, firmly-nonexpansive and Suzuki-type generalized nonexpansive
mappings and partially extends α-nonexpansive mappings as follows: Let X be a Banach
space and M be a nonempty subset of X . A mapping T : M → M is said to be generalized
α-nonexpansive, if there exists α ∈ [0,1) such that

1
2
‖x−Tx‖ ≤ ‖x− y‖ =⇒‖Tx−T y‖ ≤α‖Tx− y‖+α‖T y− x‖+ (1−2α)‖x− y‖

for all x, y ∈ M. Clearly, generalized 0-nonexpansive maps is exactly Suzuki-generalized
nonexpansive maps. The next simple example can show this fact. We see that, let M =
{(0,0), (2,0), (0,4), (4,0), (4,5), (5,4)} be a subset of R with dictionary order. Define a norm ‖ · ‖
on M by ‖(x1, x2)‖ = |x1|+ |x2|. Then (X ,‖ · ‖) is a Banach space. Define a mapping T : M → M
by T(0,0) = (0,0), T(2,0) = (0,0), T(0,4) = (0,0), T(4,0) = (2,0), T(4,5) = (4,0), T(5,4) = (0,4).
Then, T is a generalized α-nonexpansive mapping for α≥ 1

5 , but is neither a Suzuki-generalize
nonexpansive nor an a-nonexpansive mapping (see [17]).

In 2018, Mebawondu and Izuchukwu [14] introduced and studied some fixed points
properties and demiclosedness principle for generalized α-nonexpansive mappings in the frame
work of uniformly convex hyperbolic spaces. They further established strong and ∆-convergence
theorems for Picard Normal S-iteration scheme generated by a generalized α-nonexpansive
mapping in the frame work of uniformly convex hyperbolic spaces. A hyperbolic space is a triple
(X ,d,W), where (X ,d) is a metric space and W : X2 × [0,1]→ X is such that

(W1) d(u,W(x, y,α))≤αd(u, x)+ (1−α)d(u, y);

(W2) d(W(x, y,α),W(x, y,β))= |α−β|d(x, y);

(W3) W(x, y,α)=W(y, x,1−α);
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(W4) d(W(x, z,α),W(y,w,α))≤ (1−α)d(x, y)+αd(z,w),

for all x, y, z,w ∈ X and α,β ∈ [0,1]. The setting of hyperbolic spaces introduced by Kohlenbach
[10]. The class of hyperbolic spaces contains normed spaces and convex subsets thereof, the
Hilbert ball equipped with the hyperbolic metric. All normed spaces and their subsets are the
examples of hyperbolic spaces as well convex metric spaces. It is remarked that CAT(0) spaces
and Banach spaces are important examples of this type of hyperbolic spaces.

In this paper, we introduce and study some properties of the generalized α-nonexpansive
mapping on a nonempty subset of a hyperbolic space and prove fixed point theorems for
generalized α-nonexpansive mappings, ∆-convergence theorems and convergence theorems in a
hyperbolic space.

2. Preliminaries
Now, we recall definitions on hyperbolic spaces. If x, y → X and λ ∈ [0,1], then we use the
notation (1−λ)x⊕λy for W(x, y,λ). The following holds even for the more general setting of
convex metric space [21], as follows:

d(x,W(x, y,λ))=λd(x, y) and d(y,W(x, y,λ))= (1−λ)d(x, y)

for all x, y ∈ X and λ ∈ [0,1].
A hyperbolic space (X ,d,W) is uniformly convex [18] if for any r > 0 and ε ∈ (0,2], there

exists δ ∈ (0,1] such that for all a, x, y ∈ X ,

d
(
W

(
x, y,

1
2

)
,a

)
≤ (1−δ)r

provided d(x,a)≤ r,d(y,a)≤ r and d(x, y)≥ εr.
A mapping η : (0,1)× (0,2] → (0,1], which providing such a δ = η(r,ε) for given r > 0 and

ε ∈ (0,2], is called as a modulus of uniform convexity [19]. We call the function η is monotone if
it decreases with r (for fixed ε), that is, η(r2,ε)≤ η(r1,ε), for all r2 ≥ r1 > 0.

Let M be a nonempty subset of metric space (X ,d) and {xn} be any bounded sequence in X
while diam(M) denote the diameter of M.

Definition 2.1. Let M be a nonempty subset of metric space X and let {xn} be any bounded
sequence in M. Let a continuous functional ra(·, {xn}) : X →R+ defined by

ra(x, {xn})= limsup
n→∞

d(xn, x), for all x ∈ X .

Then, consider the following:

(i) The infimum of ra(·, {xn}) over M is said to be the asymptotic radius of {xn} with respect
to M and is denoted by ra(M, {xn});

(ii) a point z ∈ M is said to be an asymptotic center of the sequence {xn} with respect to M if

ra(z, {xn})= inf ra(x, {xn}), x ∈ M

the set of all asymptotic centers of {xn} with respect to M is denoted by A(M)(M, {xn});

(iii) this set may be empty, a singleton, or certain infinitely many points;
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(iv) if the asymptotic radius and the asymptotic center are taken with respect to X , then these
are simply denoted by ra(X , {xn})= ra({xn}) and A(M)(X , {xn})= A(M)({xn}), respectively;

(v) for x ∈ X , ra(x, {xn})= 0 if and only if lim
n→∞xn = x.

It is known that every bounded sequence has a unique asymptotic center with respect to
each closed convex subset in uniformly convex Banach spaces and even CAT(0) spaces (see [5]).

Definition 2.2 ([9]). A sequence {xn} in X is said to ∆-converge to x ∈ X , if x is the unique
asymptotic center of {xnk } for every subsequence {xnk } of {xn}. In this case, we write ∆- lim

n→∞xn = x.

Remark 2.3 ([11]). We note that ∆-convergence coincides with the usually weak convergence
known in Banach spaces with the usual Opial property.

Lemma 2.4 ([12]). Let (X ,d,W) be a complete uniformly convex hyperbolic space with monotone
modulus of uniform convexity η. Then every bounded sequence {xn} in X has a unique asymptotic
center with respect to any nonempty closed convex subset M of X .

Lemma 2.5 ([4]). Let X be a complete uniformly convex hyperbolic space with monotone modulus
of uniform convexity η and let {xn} be a bounded sequence in X with A({xn})= {x}. Suppose {xnk }
is any subsequence of {xn} with A({xn})= {x1} and {d(xn, x1)} converges, then x = x1.

Lemma 2.6 ([8]). Let (X ,d,W) be a uniformly convex hyperbolic space with monotone modulus
of uniform convexity η. Let x ∈ X and {αn} be a sequence in [a,b] for some a,b ∈ (0,1). If {xn} and
{yn} are sequences in X such that limsup

n→∞
d(xn, x)≤ c, limsup

n→∞
d(yn, x)≤ c and lim

n→∞Wd(xn, yn,αn)

for some c ≥ 0. Then lim
n→∞d(xn, yn)= 0.

Definition 2.7. Let M be a nonempty subset of a hyperbolic space X and {xn} be a sequence in
X . Then {xn} is called a Fejér monotone sequence with respect to M if for all x ∈ M and n ≥ 1,

d(xn+1, x)≤ d(xn, x).

Example 2.8. Let M be a nonempty subset of X , and T : M → M be a quasi-nonexpansive (in
particular, nonexpansive) mapping such that F(T) 6= ; and x0 ∈ M. Then the sequence {xn} of
Picard iterates is Fejér monotone with respect to F(T).

Proposition 2.9 ([5]). Let {xn} be a sequence in X and M be a nonempty subset of X . Suppose
that {xn} is Fejér monotone with respect to M, then we have the followings:
(1) {xn} is bounded;

(2) The sequence {d(xn, p)} is decreasing and converges for all p ∈ F(T);

(3) lim
n→∞d(xn,F(T)) exists.

Definition 2.10 ([16]). Let M be a nonempty subset of a metric space X . A self mapping T of M
with nonempty fixed point set F(T) in M is said to satisfy Condition I if there is a nondecreasing
function f : [0,∞)→ [0,∞) with f (0)= 0, f (r)> 0 for r ∈ (0,∞), such that d(x,Tx)≥ f (D(x,F(T)))
for all x ∈ M, where D(x,F(T))= inf{d(x, p) : p ∈ F(T)}.
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3. Main Results
In this section, we will prove some property for class of generalized α-nonexpansive mappings in
a hyperbolic spaces. First, we introduce generalized α-nonexpansive mappings in a hyperbolic
space as follows: Let M be a nonempty subset of hyperbolic space X . Then T : M → M is said to
satisfy generalized α-nonexpansive, if

1
2

d(x,Tx)≤ d(x, y)=⇒ d(Tx,T y)≤αd(y,Tx)+αd(x,T y)+ (1−2α)d(x, y)

for all x, y ∈ M.
From [17, Proposition 3.5, Lemma 3.7 and Lemma 3.8], we introduce Lemma 3.1, Lemma 3.2

and Lemma 3.3 in hyperbolic space respectively.

Lemma 3.1. Let M be a nonempty subset of hyperbolic space X and T : M → M be a generalized
α-nonexpansive mapping. Then, for all x, y ∈ M :

(i) d(Tx,T2x)≤ d(x,Tx);

(ii) Either 1
2 d(x,Tx)≤ d(x, y) or 1

2 d(Tx,T2x)≤ d(Tx, y);

(iii) Either d(Tx,T y)≤α(Tx, y)+αd(x,T y)+ (1−2α)d(x, y)
or d(T2x,T y)≤αd(Tx,T y)+αd(T2x, y)+ (1−2α)d(Tx, y).

Proof. (i) Since,
1
2

d(x,Tx)≤ d(x,Tx)

by definition of T, we obtain that

d(Tx,T2x)≤αd(Tx,Tx)+αd(T2x, x)+ (1−2α)d(x,Tx)

=αd(T2x, x)+ (1−2α)d(x,Tx).

We choose α= 0< 1, then we have d(Tx,T2x)≤ d(x,Tx).
(ii) We will prove by contradiction, suppose that

1
2

d(x,Tx)> d(x, y) and
1
2

d(Tx,T2x)> d(Tx, y).

So, by (i) we have

d(x,Tx)≤ d(x, y)+d(Tx, y)

< 1
2

d(x,Tx)+ 1
2

d(Tx,T2x)

≤ d(x,Tx).

This is a contradiction. Hence, we have 1
2 d(x,Tx)≤ d(x, y) or 1

2 d(Tx,T2x)≤ d(Tx, y). (iii) follows
from (ii).

Lemma 3.2. Let M be a nonempty subset of hyperbolic space X and T : M → M be a generalized
α-nonexpansive mapping. Then, for all x, y ∈ M with x ≤ y,

d(x,Tx)≤ (3+α)
(1−α)

d(x,Tx)+d(x, y).
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Proof. By Lemma 3.1, we have for all x, y ∈ M either

d(Tx,T y)≤α(Tx, y)+αd(x,T y)+ (1−2α)d(x, y)

or

d(T2x,T y)≤αd(Tx,T y)+αd(T2x, y)+ (1−2α)d(Tx, y).

In first case, we consider

d(x,T y)≤ d(x,Tx)+d(Tx,T y)

≤ d(x,Tx)+αd(Tx, y)+αd(T y, x)+ (1−2α)d(x, y)

≤ d(x,Tx)+αd(Tx, x)+αd(x, y)+αd(T y, x)+ (1−2α)d(x, y).

This implies that

d(x,T y)≤ (1+α)
(1−α)

d(Tx, x)+d(x, y)

In other case, we consider

d(x,T y)≤ d(x,Tx)+d(Tx,T2x)+d(T2x,T y)

≤ 2d(x,Tx)+αd(Tx,T y)+αd(T2, y)+ (1−2α)d(Tx, y)

≤ 2d(x,Tx)+αd(Tx, x)+αd(T y, x)+αd(T2x,Tx)+αd(Tx, y)+ (1−2α)d(Tx, y)

≤ (2+α)d(x,Tx)+αd(T y, x)+αd(x,Tx)+ (1−α)d(Tx, y)

≤ (2+α)d(x,Tx)+αd(T y, x)+αd(x,Tx)+ (1−α)d(Tx, x)+ (1−α)d(x, y).

This implies that

d(x,T y)≤ (3+α)
(1−α)

d(x,Tx)+d(x, y).

Lemma 3.3. Let M be a nonempty subset of hyperbolic space X and T : M → M be a generalized
α-nonexpansive mapping and F(T) 6= ;, then T is a quasi-nonexpansive mapping.

Proof. Let p ∈ F(T) and x ∈ M. Since 1
2 d(z,Tz)= 0≤ d(z, x), we obtain that

d(p,Tx)= d(T p,Tx)

≤αd(T p, x)+αd(Tx, p)+ (1−2α)d(p, x).

We choose α= 0< 1, then we have

d(p,Tx)≤ d(p, x).

Hence, T is a quasi-nonexpansive mapping.

Lemma 3.4. Let X be complete uniformly convex hyperbolic space with monotone modulus
of convexity η, M be a nonempty closed convex subset of X and T be a self generalized α-
nonexpansive mapping on M. If {xn} is bounded sequence in M such that

lim
n→∞d(xn,Txn)= 0,

then T has a fixed point.
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Proof. Since {xn} is bounded sequence in X , and by Lemma 2.4, we have {xn} has unique
asymptotic center in M and lim

n→∞d(xn,Txn) = 0. Since T satisfies the generalized α-
nonexpansive and from Lemma 3.2 such that

d(xn,Tx)≤ (3+α)
(1−α)

d(xn,Txn)+d(xn, x).

Now, we take limsup as n →∞ both the sides, we have

ra(Tx, {xn})= limsup
n→∞

d(xn,Tx)

≤ limsup
n→∞

[
(3+α)
(1−α)

d(xn,Txn)+d(xn, x)
]

≤ limsup
n→∞

d(xn, x)= ra(x, {xn}).

By the uniqueness of asymptotic center, Tx = x, this implies that x is fixed point of T . Hence, T
has a fixed point.

Lemma 3.5. Let M be a nonempty and convex subset of a strictly convex hyperbolic space X . Let
T be a self generalized α-nonexpansive mapping on M and F(T) 6= ;, then F(T) is closed and
convex.

Proof. Assume that {xn} ⊆ F(T) such that {xn} converges to some y ∈ M. We will show that
y ∈ F(T). By Lemma 3.2, we get that

d(xn,T y)≤ (3+α)
(1−α)

d(xn,Txn)+d(xn, y),

taking limsup as n →∞ both the sides, we have

limsup
n→∞

d(xn,T y)≤ limsup
n→∞

(3+α)
(1−α)

d(xn,Txn)+ limsup
n→∞

d(xn, y).

So, limsup
n→∞

d(xn,T y)≤ limsup
n→∞

d(xn, y). By the uniqueness of the limit point of M, we obtain that

T y= y. Therefore, F(T) is closed.
Next, we show that F(T) is convex, let x, y ∈ F(T), then for β ∈ [0,1], we have

d(x,T(W(x, y,β)))≤ (3+α)
(1−α)

d(x,Tx)+d(x,W(x, y,β))

≤ d(x,W(x, y,β))

and

d(y,T(W(x, y,β)))≤ (3+α)
(1−α)

d(y,T y)+d(y,W(x, y,β))

≤ d(y,W(x, y,β))

Now, we consider

d(x, y)≤ d(x,T(W(x, y,β)))+d(T(W(x, y,β)), y)

≤ d(x,W(x, y,β))+d(W(x, y,β), y)

≤ d(x, y).

Therefore, if d(x,T(W(x, y,β))) < d(x,W(x, y,β)) or d(T(W(x, y,β)), y) < d(W(x, y,β), y), then
which the contradiction to d(x, y) < d(x, y), so d(x,T(W(x, y,β))) = d(x,W(x, y,β)) and
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d(T(W(x, y,β)), y)= d(W(x, y,β), y). Since M is strictly convex, we have T(W(x, y,β)=W(x, y,β),
that is W(x, y,β) ∈ F(T). Hence, F(T) is convex.

Theorem 3.6. Let M be a nonempty closed bounded and convex subset of a complete uniformly
convex hyperbolic space with monotone modulus of uniform convexity η and T be a self
generalized α-nonexpansive mapping on M. Suppose that {xn} is a sequence in M, with
d(xn,Txn) → 0. If A(M)(M, {xn}) = x, then x is a fixed point of T . Moreover, F(T) is closed
and convex.

Proof. Suppose that there exists some approximate fixed point sequence {xn}. By Lemma 2.4,
the asymptotic center of any bounded sequence is in M has a unique asymptotic center in M.
Let A(M)(M, {xn})= x. We will prove that x = Tx. From Lemma 3.2, we have

d(xn,Tx)≤ (3+α)
(1−α)

d(xn,Txn)+d(xn, x),

taking limsup as n →∞ both the sides, we obtain that

limsup
n→∞

d(xn,Tx)≤ (3+α)
(1−α)

limsup
n→∞

d(xn,Txn)+ limsup
n→∞

d(xn, x)

= limsup
n→∞

d(xn, x).

By uniqueness of the asymptotic center implies Tx = x. Moreover, F(T) closed and convex, by
the prove in Lemma 3.5.

Corollary 3.7. Let M be a nonempty closed bounded and convex subset of a complete uniformly
convex hyperbolic space with monotone modulus of uniform convexity η. Suppose that {xn}
is a sequence in M, with d(xn,Txn) → 0. If T satisfies generalized α-nonexpansive and
A(M)(M, {xn})= x, then x is a fixed point of T . Moreover, F(T) is closed and convex.

Now, we expand the result of Abbas and Nazir [1] to generalized α-nonexpansive mappings
in hyperbolic spaces, as follows: Let M be a nonempty closed convex subset of a hyperbolic space
X and T be a self generalized α-nonexpansive mapping on M. For any x1 ∈ M the sequence {xn}
is defined by

xn+1 =W(T yn,Tzn,αn)
yn =W(zn,Tzn,βn)
zn =W(xn,Txn,γn) n ∈N,

(3.1)

where {αn}, {βn} and {γn} are in [0,1] for all n ∈N.

Lemma 3.8. Let M be a nonempty closed convex subset of a hyperbolic space X and T : M → M
be a mapping which satisfies the generalized α-nonexpansive. If {xn} is a sequence defined by
(3.1), then {xn} is Fejér monotone with respect to F(T).

Proof. Since T satisfies the generalized α-nonexpansive and p ∈ F(T), we have
1
2

d(p,T p)= 0≤ d(p, xn),
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1
2

d(p,T p)= 0≤ d(p, yn)

and
1
2

d(p,T p)= 0≤ d(p, zn),

for all n ∈N. We obtain that

d(T p,Txn)≤αd(T p, xn)+αd(Txn, p)+ (1−2α)d(p, xn),

d(T p,T yn)≤αd(T p, yn)+αd(T yn, p)+ (1−2α)d(p, yn)

and

d(T p,Tzn)≤αd(T p, zn)+αd(Tzn, p)+ (1−2α)d(p, zn).

By (3.1) and Lemma 3.3, we have

d(T p,Txn)≤ d(p, xn),

d(T p,T yn)≤ d(p, yn)

and

d(T p,Tzn)≤ d(p, zn). (3.2)

Using (3.1) and (3.2), we get

d(xn+1, p)= d(W(T yn,Tzn,αn), p)

≤ (1−αn)d(T yn, p)+αnd(Tzn, p)

≤ (1−αn)d(yn, p)+αnd(zn, p), (3.3)

where

d(yn, p)= d(W(zn,Tzn,βn), p)

≤ (1−βn)d(zn, p)+βnd(Tzn, p)

≤ (1−βn)d(zn, p)+βnd(zn, p)

= d(zn, p), (3.4)

and

d(zn, p)= d(W(xn,Txn,γn), p)

≤ (1−βn)d(xn, p)+γnd(Txn, p)

≤ (1−βn)d(xn, p)+γnd(xn, p)

= d(xn, p). (3.5)

Now, taking (3.4) in (3.3), we have

d(xn+1, p)≤ (1−αn)d(zn, p)+αnd(zn, p)

= d(zn, p). (3.6)

Taking (3.5) in (3.6), we obtain that

d(xn+1, p)≤ d(zn, p)≤ d(xn, p) (3.7)

Hence, {xn} is Fejér monotone with respect to F(T).
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Lemma 3.9. Let M be a nonempty closed convex subset of a complete uniformly convex hyperbolic
space with monotone modulus of uniform convexity η and T be a self generalized α-nonexpansive
mapping on M. If {xn} is a sequence defined by (3.1), then F(T) is nonempty if and only if the
sequence {xn} is bounded and lim

n→∞d(xn,Txn)= 0.

Proof. Assume that F(T) is nonempty and let p ∈ F(T). From Lemma 3.8 and Proposition 2.9,
we have {xn} is Fejér monotone with respect to F(T) and bounded such that lim

n→∞d(xn, p) exists,
let lim

n→∞d(xn, p)= k. We divide into two case

(i) If k = 0, we have

d(xn,Txn)≤ d(xn, p)+d(p,Txn),

by Lemma 3.3, we get

d(xn,Txn)≤ 2d(xn, p).

Taking lim as n →∞ on both the sides above inequality, we have

lim
n→∞d(xn,Txn)= 0.

(ii) If k > 0, let p ∈ F(T) and since T satisfies the generalized α-nonexpansive, by Lemma 3.3,
we have

d(Txn, p)≤ d(xn, p),

by taking limsup as n →∞ both the sides, we have

limsup
n→∞

d(Txn, p)≤ k. (3.8)

Taking limsup as n →∞ both the sides in (3.5), we obtain that

limsup
n→∞

d(zn, p)≤ k. (3.9)

From (3.6), we get

d(xn+1, p)≤ d(zn, p),

so, taking liminf as n →∞ both the sides, we obtain that

liminf
n→∞ d(xn+1, p)≤ liminf

n→∞ d(zn, p)

k ≤ liminf
n→∞ d(zn, p) (3.10)

By (3.9) and (3.10), we have

lim
n→∞d(zn, p)= k,

which implies that

k = limsup
n→∞

d(zn, p)

= limsup
n→∞

d(W(xn,Txn,γn), p)

≤ limsup
n→∞

[(1−γn)d(xn, p)+γnd(Txn, p)]

≤ limsup
n→∞

(1−γn)d(xn, p)+ limsup
n→∞

γnd(Txn, p)= k.
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Therefore, by Lemma 2.6, we have lim
n→∞d(xn,Txn)= 0.

Conversely, assume that {xn} is bounded and lim
n→∞d(xn,Txn)= 0. Hence, from Lemma 3.4, we

have Tx = x, that is F(T) is nonempty.

Theorem 3.10. Let M be a nonempty closed convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η. Let T : M → M satisfies
the generalized α-nonexpansive, such that F(T) 6= ;. Then the sequence {xn} defined in (3.1),
∆-converges to a common fixed point of T .

Proof. By Lemma 3.8, we have {xn} is a bounded sequence then, {xn} has a ∆-convergent
subsequence.

Next, we show that every ∆-convergent subsequence of {xn} has unique ∆-limit F(T). Let
u and v ∆-limits of the subsequences {un} and {vn} of {xn}. By Lemma 2.4, A(M)(M, {un})= {u}
and A(M)(M, {vn})= {v}. By Lemma 3.9, we get

lim
n→∞d(un,Tun)= 0.

From Lemma 3.4, we have u and v are fixed points of T .
Now, we will show that u = v. Assume that u 6= v, then by uniqueness of asymptotic center

we obtain that

limsup
n→∞

d(xn,u)= limsup
n→∞

d(un,u)

< limsup
n→∞

d(un,v)

= limsup
n→∞

d(xn,v)

= limsup
n→∞

d(vn,v)

< limsup
n→∞

d(vn,u)

= limsup
n→∞

d(xn,u),

which is a contradiction, therefore u = v. Hence, the sequence {xn} ∆-converges to a fixed point
of T . This completes the proof.

Theorem 3.11. Let M be a nonempty closed convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η and T : M → M be a mapping
which satisfies the generalized α-nonexpansive with F(T) 6= ;. Then the sequence {xn} which is
defined by (3.1), converges strongly to some fixed point of T if and only if liminf

n→∞ D(xn,F(T))= 0,
where D(xn,F(T))= inf

x∈F(T)
d(xn, x).

Proof. Assume that {xn} converges to p ∈ F(T). Thus, lim
n→∞d(xn, p) = 0, since 0 ≤ D(xn,F(T) ≤

d(xn, p)≤ 0. Hence, liminf
n→∞ D(xn,F(T))= 0.

Conversely, from Lemma 3.5, we have F(T) is closed. Assume that

lim
n→∞ infD(xn,F(T))= 0.
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From (3.7), we have

D(xn+1,F(T))≤ D(xn,F(T)), n ∈N
then by Lemma 3.8 and Proposition 2.9, we obtain that lim

n→∞d(xn,F(T)) exists. Then we have
lim

n→∞D(xn,F(T))= 0.
Now, we will show that {xn} is convergent to p ∈ F(T). Consider a subsequence {xnk } of {xn}

we get

d(xnk , pk)< 1
2k ,

for all k ≥ 1 where {pk} is in F(T). By Lemma 3.8, we have

d(xnk+1 , pk)≤ d(xnk , pk)< 1
2k ,

this implies that

d(pk+1, pk)≤ d(pk+1, xnk+1)+d(xnk+1 , pk)

< 1
2k+1 + 1

2k

< 1
2k−1 .

This shows that {pk} is a Cauchy sequence in F(T). Since F(T) is closed, {pk} is a convergent
sequence. Let {pk} converges to p. Since

d(xnk , p)≤ d(xnk , pk)+d(pk, p)→ 0, as k →∞,

such that lim
k→∞

d(xnk , p)= 0. Since lim
n→∞d(xn, p) exists, the sequence {xn} is convergent to p. This

completes the proof.

Theorem 3.12. Let M be a nonempty closed convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η and T : M → M be a mapping
which satisfies the generalized α-nonexpansive. Moreover, T satisfies the condition I with
F(T) 6= ;. Then the sequence {xn} which is defined by (3.1), converges strongly to some fixed point
of T .

Proof. From Lemma 3.5, we have F(T) is closed. Observe that by Lemma 3.8, we have
lim

n→∞d(xn,Txn)= 0. It follows from the condition I that

lim
n→∞ f (D(xn,F(T)))≤ lim

n→∞d(xn,Txn)= 0.

Thus, we get

lim
n→∞ f (D(xn,F(T)))= 0.

Since f : [0,∞) → [0,∞) is a nondecreasing mapping satisfying f (0) = 0 and f (r) > 0 for all
r ∈ (0,∞), we have lim

n→∞d(xn,F(T))= 0. Rest of the proof follows in lines of Theorem 3.11. Hence
the sequence {xn} is convergent to p ∈ F(T). This completes the proof.
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4. Conclusion
In this paper, we studied some properties of the generalized α-nonexpansive mappings

on a nonempty subset of a hyperbolic space, proved fixed point theorems for generalized α-
nonexpansive mappings and proved convergence theorems. Moreover, we obtain that corollary
for the generalized α-nonexpansive mappings on a nonempty subset of a hyperbolic space as
follows:

(1) Let M be a nonempty subset of hyperbolic space X and T : M → M be a generalized
α-nonexpansive mapping. Then, for all x, y ∈ M :

(i) d(Tx,T2x)≤ d(x,Tx);
(ii) Either 1

2 d(x,Tx)≤ d(x, y) or 1
2 d(Tx,T2x)≤ d(Tx, y);

(iii) Either d(Tx,T y)≤α(Tx, y)+αd(x,T y)+ (1−2α)d(x, y) or
d(T2x,T y)≤αd(Tx,T y)+αd(T2x, y)+ (1−2α)d(Tx, y).

(2) Let M be a nonempty closed bounded and convex subset of a complete uniformly
convex hyperbolic space with monotone modulus of uniform convexity η and T be a
self generalized α-nonexpansive mapping on M. Suppose that {xn} is a sequence in M,
with d(xn,Txn)→ 0. If A(M)(M, {xn})= x, then x is a fixed point of T . Moreover, F(T) is
closed and convex.

(3) Let M be a nonempty closed convex subset of a complete uniformly convex hyperbolic
space X with monotone modulus of uniform convexity η. Let T : M → M satisfies the
generalized α-nonexpansive, such that F(T) 6= ;. Then the sequence {xn} defined in (3.1),
∆-converges to a common fixed point of T .

(4) Let M be a nonempty closed convex subset of a complete uniformly convex hyperbolic
space X with monotone modulus of uniform convexity η and T : M → M be a mapping
which satisfies the generalized α-nonexpansive with F(T) 6= ;. Then the sequence {xn}
which is defined by (3.1), converges strongly to some fixed point of T if and only if
liminf

n→∞ D(xn,F(T))= 0, where D(xn,F(T))= inf
x∈F(T)

d(xn, x).

(5) Let M be a nonempty closed convex subset of a complete uniformly convex hyperbolic
space X with monotone modulus of uniform convexity η and T : M → M be a mapping
which satisfies the generalized α-nonexpansive. Moreover, T satisfies the condition I with
F(T) 6= ;. Then the sequence {xn} which is defined by (3.1), converges strongly to some
fixed point of T .
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