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1. Introduction

The idea of quasi-coincidence of a fuzzy point with a fuzzy set, which is mentioned in [10], played
a vital role to generate some different types of fuzzy subgroups, called (a, 8)-fuzzy subgroups,
introduced by Bhakat and Das [1]. In particular, (€,€V q )-fuzzy subgroup is an important and
useful generalization of Rosenfeld’s fuzzy subgroup. The concept of (a, f)-fuzzy subalgebras
in BCK/BCI-algebras is also important and useful generalization of the well-known concepts,
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called fuzzy subalgebras (see for e.g., [3], [4]], [5] and [11]). Recently, Muhiuddin et al. studied
the fuzzy set theoretical approach to the BCK/BCI-algebras on various aspects (see for e.g., [7]],
(8], [9D).

In this paper, we introduce the notion of (¢, )-characteristic fuzzy sets in BCK/BCI-algebras.
Given an ideal F of a BCK/BCI-algebra X, we provide conditions for the (¢,6)-characteristic
fuzzy set in X to be an (€,e Vv q)-fuzzy ideal, an (€, q)-fuzzy ideal, an (€,€ A q)-fuzzy ideal, a
(q,q)-fuzzy ideal, a (g, €)-fuzzy ideal, a (q,€ Vv q)-fuzzy ideal and a (g, € A q)-fuzzy ideal. Using
the notions of (a, )-fuzzy ideal u;f"s), we investigate conditions for the F to be an ideal of X
where (a, f) is one of (€,eV q), (€,€Aq), (€,q), (q,€Vq), (q,€Nq), (q,€) and (q,q).

2. Preliminaries
By a BCI-algebra we mean an algebra (X, *,0) of type (2,0) satisfying the axioms:
(@l) ((xxy)*(x*2))*(z*y)=0,
(a2) (x*(x*y))*xy=0,
(a3) x*xx=0,
(a4) xxy=y*xx=0 = x=y,
for all x,y,z€ X.

We can define a partial ordering < by x < y if and only if x * y = 0. If a BCI-algebra X

satisfies the axiom

(@ab) O0xx=0forall xe X,
then we say that X is a BCK-algebra. A subset A of a BCK/BCI-algebra X is called an ideal
of X if it satisfies:

(I1) 0eA,

(I2) (VxeX)(VyeA)(xxyeA = x€cA).
We refer the reader to the books [2] and [6] for further information regarding BCK/BCI-
algebras.

A fuzzy set p in a set X of the form

(y) i te(0,1] ify=ux,
HY= 0 if y#x,
is said to be a fuzzy point with support x and value ¢ and is denoted by x;.

For a fuzzy point x; and a fuzzy set p in a set X, Pu and Liu [10] introduced the symbol x;ap,
where a € {€,q,eVvq,enq}. To say that x; € u (resp. x; g 1), we mean u(x) =t (resp. u(x)+t> 1),
and in this case, x; is said to belong to (resp. be quasi-coincident with) a fuzzy set u. To say that
Xt €V q U (resp. x; EAq 1), we mean x; € i1 or x;q U (resp. x; € 1 and x4 q p). To say that x;a u, we
mean x;ap does not hold, where a € {€,q,evqg,enqg}.

A fuzzy set u in a BCK/BCI-algebra X is called a fuzzy ideal of X if it satisfies:

1(0) = p(x) = minf{u(x * y), u(y)} (2.1)
for all x,ye X.

Proposition 2.1 ([3]). Let X be a BCK/BCI-algebra. A fuzzy set pin X is a fuzzy ideal of X if
and only if the following assertions are valid.

XteEuU — Ot Eu, (2.2)
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(x*y)h €U, ysEU = Xminft,s} € Y (2.3)
forall x,ye X and t,s €(0,1].

3. Ideals of BCK/BCI-Algebras Based on (a, )-Type Fuzzy Sets

In what follows, let X denote a BCK/BCI-algebra and let ¢,6 € [0,1] such that € > § unless

otherwise specified.

(€,0) .

For any non-empty subset F of X, define a fuzzy set u"" in X as follows:

(6,5)( ) e if x EF,
x):=
0 otherwise.

We say that ,ugf’a) is an (g,0)-characteristic fuzzy set in X over F (see [[9]]). In particular, (1,0)-

characteristic fuzzy set ,LL;}’O) in X over F' is the characteristic function yr of F.

Theorem 3.1. For any non-empty subset F of X, the following are equivalent:
(1) F isanideal of X.
(2) The (g,0)-characteristic fuzzy set u;f"s) is a fuzzy ideal of X.

Proof. Assume that F' is an ideal of X. Since 0 € F, clearly ,uF D0)=¢ (E D(x) for all x € X.
Let x,ye X. InyF andx*yeF then x € F and so

Ify¢ Forx*y¢F, then ,u(‘E )(y) =06 or ,uF"S)(x * y)=0. Hence

Therefore /Jgf’&) is a fuzzy ideal of X for all €,6 € [0,1] with € > 6.

Conversely, sup})ose that (2) is valid. Obviously, 0 € F'. Let x,y € X be such that y € F and
x*y€F. Then ,uF (y)=¢€ and p;f’a)(x x y) = €. It follows that

Thus x € F, and therefore F is an 1deal of X. O

Definition 3.2 ([3]). A fuzzy set y in X is said to be an (a,f)-fuzzy ideal of X, where
a,Bele,q,evqg,enq} and a # €Aq, if it satisfies the following condition:

(YxeX) (VY te(0,1D) (xiapn = 0,64, (3.1)
(V x,y €X) (V 1,2 € (0,11 ((x * Y, @ b, Yey X [t = Xrniney,10) BL) - (3.2)

Lemma 3.3 ([3]). A fuzzy set pin X is an (€,€V q)-fuzzy ideal of X if and only if it satisfies:
(1) (V x € X)(u(0) = min{u(x),0.5}),
(2) (¥ x,y € X)(u(x) = min{u(x * y), u(y),0.5}).

Theorem 3.4. If F is an ideal of X, then the (e,6)-characteristic fuzzy set ,u( £9)

fuzzy ideal of X.

isan (€,evq)-

Proof. Assume that F' is an ideal of X. Since 0 € F, we have
e 6)(0) £ =min {,u(g (), 0.5}
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forall x€ X. For any x,ye X,if x*ye F and y€ F, then x € F and so
PPy = ¢ > mln{uF N # ), &2 (y), 0.5} .
Ifx¢ F or y¢F,then u(‘g D(x)=6 or ,u(g 9(y)=65. Hence
PV (k% y) = 6= mm{ (€0 (), e ‘”(y),o.5}.
It follows from Lemma that ,u(g 9 is an (e,e v q)-fuzzy ideal of X. O

We consider the converse of Theorem

Theorem 3.5. For any €,6 € [0,1] such that 6 <e <0.5, if the (¢,0)-characteristic fuzzy set ,u(g -0)

isan (€,eV q)-fuzzy ideal of X then F is an ideal of X.

Proof If 0¢F, then ,u(g D0)y=6<e=pu® 6)(x) for some x € F. Hence x; € ,uF , and so 0, €

Vq yF ) since ,uF )isan (e,ev q)-fuzzy 1deal of X. But ,u(e XOER # ¢ and ,u(E D(0)+e=0+¢ # 1.

This is a contradiction, and so 0 € F. Let x,y € F' be such that x*y € F and y € F. Then

(E m(x xy)=¢€= ,u;f 6)(y) Using Lemma 3.3 we have

(E 5)(x) > mln{yF N(x * y), ,u(E 6)(y),0.5} =min{e,0.5} =¢,
and so x € F'. Therefore F' is an ideal of X. O

Corollary 3.6. A non-empty subset F of X is an ideal of X if and only if the characteristic
function yr of F' is an (€,€V q)-fuzzy ideal of X.

Proof. The necessity is by taking € =1 and 6 = 0 in Theorem
Conversely, suppose that the characteristic function yr of F' is an (€,€ v q)-fuzzy ideal
of X. Obviously, 0 € F by Lemma [3.3(1). Let x,y € X be such that x*y € F and y € F. Then
xF(x*y) =1= yp(y), which implies from Lemma [3.3(2) that
xF(x) = min{yr(x * y), yr(y),0.5} = min{1,0.5} =
Hence x € F, and therefore F is an ideal of X. O

Theorem 3.7. Assume that if any element t in (0,1] satisfies x; € ,u(g ,0) for xe X then 6 <t and

1-t<e. If Fis an ideal of X, then the (g,0)-characteristic fuzzy set u(g 0)
of X.

is an (€, q)-fuzzy ideal

Proof. Let x € X and t € (0,1] be such that x; € ,u(g ®) Since 0 € F and 1-¢ < €, we have
(8 5)(0) +t=€e+t>1. Hence th,u(g 9 et x , ¥ € X and ¢1,¢2 €(0,1] be such that (x * y);, € ,u;f 9)
and Yty € uF % Then u( (% y)=t1 >0 and ,u )(y) = tg > 0. It follows that ,u(g 5)(x *y)=€=
(8 5)(y) andsox*y€F and y€ F. Since F is an ideal of X, we have x € F. Hence ,uF O(x) = £,
and thus u(g 5)(x) +min{tq,¢2} = € + min{tq, 2} > 1 which shows that xmin; 15} 9 ,uF %) Therefore

,ugf 9 is an (e, g)-fuzzy ideal of X. O

We consider the converse of Theorem [3.71

Theorem 3.8. If e + 6 < 1 and the (e,0)-characteristic fuzzy set u;f"s) is an (€,q)-fuzzy ideal of X,
then F is an ideal of X.
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©9) is an (€, q)-fuzzy ideal

Proof. Assume that ¢ +§ < 1 and the (¢,6)-characteristic fuzzy set u
of X. Suppose that 0 ¢ F. Then ,u(‘g D0y=6<e=p® 6)(x) for some x € X, and so x, € ,u;f 0)

Since ,uF is an (€,q)-fuzzy ideal of X, it follows that OSq,u;f 9 that is, ,u(E D0y+e > 1.
ThlS is a contradlctlon, and thus O € F. Let x,y € X be such that x*y € F and y € F. Then
e, 5)(x xy)=¢g= ,u(g 9(y), and so (x * y), € ,uf, 9 and y, € ,u;f 9 Hence x, = Xminfe.e) q/,t;, £9) which

1mp11es that ,u(E 5)(x) + & > 1. Therefore ,uF Dx)y>1-e> 0, and thus /J(E D(x) = g, thatis, x e F.
Consequently, F' is an ideal of X. O

If we take € = 1 and § = 0 in Theorems [3.7/and then we have the following corollary.

Corollary 3.9. A non-empty subset F of X is an ideal of X if and only if the characteristic
function yr of F is an (€,q)-fuzzy ideal of X.

Theorem 3.10. Let €,6 € [0,1] such that € > 6. If F is an ideal of X, then the (g,0)-characteristic
fuzzy set ug’é) is a (q,q)-fuzzy ideal of X whenever if any element t in (0,1] satisfies x; € 'ug,é) for
xeX thend<l-t<e.

Proof. Since 0 € F we have ,u(g DOy+t=e+t> 1, that is, thu(e 0) for any x € X and
t€(0,1] with xtqu 9 Let x ,y€ X and #1,t9 € (0,1] be such that (x y)t1 q,uF ) and YVio q,u(‘g 0),
Then y(e D(x « y)+t1>1 and ,u(g 5)(y) +tg > 1, which imply that ,uF D(x « y)>1-¢t;1 =6 and
ue 6)(y) >1—t9 = 6. It follows that p(g Nxxy)=e= ,u;f %(y) and so that x+y € F and y € F. Since
F is an ideal of X, we have x € F' and so ,u(e 9(x) = £. Thus
(8 5)(x) +min{tq,to} = e+ minf{tq,t9} > 1,

(,0) -

that is, Xmin(t,,t5) @ ,uF % This shows that Mg is a (q,q)-fuzzy ideal of X. O

Theorem 3.11. Let €,6 €[0,1] such that € > max{5,0.5} and €+ < 1. If the (¢,6)-characteristic
fuzzy set ,u('3 9 isa (q,q9)-fuzzy ideal of X, then F is an ideal of X.

Proof. Assume that 0 ¢ F'. Then ,u(e D0y)=6< £ = (E 5)(x) for some x € X, which implies that
(g 5)(x)+£ =2¢ > 1, that is, xgun 9 Since uF )is a (q,q)-fuzzy ideal of X, it follows that
OSq ,u}e, % and so that 6 + ¢ = ,u(£ 90)+¢e>1. Thisis a contradiction, and therefore 0 € F'. Let

x,y € X be such that x * y € F and y € F. Then ,u(‘g Dxxy)=e= ,u(g 9(y), which implies that
(65)(x*y)+8 e+e>1 and ,u(g&)(y)+£:£+8 >1,

that is, (x = y)gun and ygqu €9 Since uF €9 is a (q,q)-fuzzy ideal of X, it follows that

Xe = Xmin(e,e} § ,uF £9) Hence ,u(g 5)(x) >1—¢€ =0, and therefore ,u(e 5)(x) = €. This proves that x € F',
and F' is an ideal of X. O

If we take € =1 and 6 = 0 in Theorems and (3.11} then we have the following corollary.

Corollary 3.12. A non-empty subset F of X is an ideal of X if and only if the characteristic
function yr of F is a (q,q)-fuzzy ideal of X.

Theorem 3.13. Let €,6 €[0,1] such that € > 6. If F is an ideal of X, then the (e,08)-characteristic
fuzzy set ,u;f’é) is a (q,€)-fuzzy ideal of X whenever if any element t in (0,1] satisfies x; € ,u;f’(s) for
xeX thend<l-tandt<e.
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Proof. Obviously, 0; € ,u(E 0) for all x € X and ¢ € (0,1] with x;q y(g 9 Let x,y€X and ¢1,t9 €(0,1]
be such that (x * )ty un ) and Yty un % Then ,u(g Nx*y)+t1>1and u}f’é)(y) +t9>1, which

imply that ,uF O (x y)>1-¢t1=6 and ,u('E 5)(y) >1—-te2=6. Hence y;f"s)(x xy)=€= (E 6)(y) and
sox*y€eF and y € F. Since F is an ideal of X, we have x € F' and thus

e 5)(x) € = min{ty, o},

(€,0) -

that is, Xmin(z;,t,) € ,uF % This shows that Ky is a (g, €)-fuzzy ideal of X. O

Theorem 3.14. Let €,6 €[0,1] such that € > max{9,0.5}. If the (e,0)-characteristic fuzzy set u(g ,0)

is a (q,€)-fuzzy ideal of X, then F is an ideal of X.

Proof If0¢ F, then ,u(g Do)y=6<e= ,u;f"s)(x) for some x € X. Hence u;f’a)(x) +e=2e>1, and so
Xeq ,uF 9 1t follows that ,u(g 9(0) > ¢ since y;f"s) is a (q, €)-fuzzy ideal of X. This is a contradiction,

and thus 0 € F. Let x,y € X be such that x* y € F and y € F. Then ,u(“s)(x*y) —g= (85)(3/)
which implies that

(86)(x*y)+8 e+e>1 and y(g5)(y)+£:£+£>1,

(g,0) (£,0) .

that is, (x * y)equp"" and ygqp(g 9 Since Ug" is a (g,€)-fuzzy ideal of X, it follows that

Xe = Xminfe,e) € ,u% £9) and so that ,u(g 5)(x) =¢, that is, x € F. Therefore F' is an ideal of X. O

If we take ¢ =1 and 6 =0 in Theorems and |3.14] then we have the following corollary.

Corollary 3.15. A non-empty subset F of X is an ideal of X if and only if the characteristic
function yr of F is a (q,€)-fuzzy ideal of X.

Theorem 3.16. Let €,6 € [0,1] such that € > 6. If F is an ideal of X, then the (¢,0)-characteristic
fuzzy set ,u;f’ isan (€,€ A q)-fuzzy ideal of X whenever if any element t in (0, 1] satisfies x; € ,u( £:9)
forxeX then 6<tand 1—t<e.

Proof. Obviously 0; € ,u;f’ since 0 € F'. Now, ,u(g NOy+t=c+t > 1, and so th,u;f’a). Thus
0; € Aqu;f 9 et x,y € X and t1,t2 € (0,1] be such that (x * y);, € u;‘f’g) and y;, € ,u}f 28
Then ,u(‘g O (x y)=t1 >0 and ,u(g’a)(y) > t9 > 0, which imply that x*y € F and y € F and
£= mln{tl,tz} Since F' is an ideal of X, we have x € F'. Hence ,u(g m(x) = ¢ = minf{ty,t9}, i.e.,

Xmin{ty,to) € ,uF % . Now, ,u(g 5)(x)+m1n{t1, to} = e+min{ty,ta} > 1 and S0 Xminit; £9) 9 ,ug"s). Therefore

Xmin{t1,te) EAQ uF 5), and consequently u;f"s) is an (€,e A g )-fuzzy ideal of X. O

Theorem 3.17. Let €,6 € [0,1] such that € > 6. If e+ 6 <1 and the (e,0)-characteristic fuzzy set

u;f 9 is an (€,enq)-fuzzy ideal of X, then F is an ideal of X.

Proof. Assume that €+ 6 <1 and the (¢,6)-characteristic fuzzy set ,u;f 9 is an (e,e Ag)-fuzzy

ideal of X. If 0 ¢ F, then ,u(g’(”(O) 0<e= (8 5)(x) for some x € X. Thus «x; € ,u;f 6), which

implies that 0. e A g u(g 9 since ,u;f 9 is an (€, € Aq)-fuzzy ideal of X. But ,u(g 6)(0) < € implies

that 0, E,u(“s) Also, p(86)(0)+£:5+8<1 ie. OEq,u;f(S) Hence 0, €/\q,u(€6)

Therefore 0 € F Let x,y€X besuchthat x«yeF and y € F Then u(e )(x *Y)=¢€= u}f m(y) and

a contradiction.

so (x* y)e € ,uF and Ye € ,u( £:0) Hence Xe = Xminfe,e} €A q,uF 0 , that is, X = Xninge,e) € ,u(g %) and
Xe = (X * Y)minfe,e} 4 uF % Hence ,u )(x) > ¢ and [J(g 5)(x) +e>1.If u(g 5)(x) >¢, then ,u(e 5)(x) =€
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and thus x € F. If ,u(g (x)+¢e>1, then ,u(E D(x)>1-¢=6 and so ,u(E 9(x) = £, which shows that
x € F. Therefore F is an ideal of X. O

If we take € =1 and 6 = 0 in Theorems [3.16/and [3.17] then we have the following corollary.

Corollary 3.18. A non-empty subset F of X is an ideal of X if and only if the characteristic
function yr of F is an (€,€ Aq)-fuzzy ideal of X.

Theorem 3.19. Let €,6 €[0,1] such that € > 6. If F is an ideal of X, then the (e,8)-characteristic
fuzzy set ,u%’a) is a (q,€ Aq)-fuzzy ideal of X under the condition that if any element t in (0,1]
satisfies x; € ,ugf’ﬁ) forxeX thend<1—-tandt<e.

Proof. Let x€ X and ¢ €(0,1] be such that x; q,u;f’a) Then ,u(g"s)(x) >1-t=9, and so ,u;f"s)(x) =

0 and &) +t=e+t>1-t+t=1,
(65) d

e>1-t¢. Since 0€ F, we have ,u(“”(O)—e>t ie., 0;€ g
ie. thp(g 9 Thus 0, €/\q,u(£ ) . Let x,y € X and t1,¢2 € (0,1] be such that (x * y);, q i,
Vo q,u;f %) Then ,u(g Mx+y)+t;>1and u(g 9(y)+tg > 1, which imply that ,u(s Nxxy)>1-t126
and ,u(g (y)>1-t9 > 5. Hence ,u(g Vg xy)=e=p® ‘”(y) and so € > max{l —¢;,1—to}. Thus

x+*y€eF and y € F. Since F is an ideal of X, we have x € F and thus

e ‘”(x) € = min{ty,t9},
that is, Xmin,,¢0) € pF % . Now, p(g 6)(x) +minftq,22} = € + min{¢q, 22} > 1, and S0 Xmin{sy,z0) qp;, 0),

(&,6) (e)

Hence Xminft;,t0 EAQUE" ', and g is a (g, € A q)-fuzzy ideal of X. O

Theorem 3.20. Let €,6 €[0,1] such that € > max{6,0.5}. If the (e,0)-characteristic fuzzy set u(g 0)

isa (q,eNq)-fuzzy ideal of X, then F is an ideal of X.

Proof. If 0 ¢ F, then ,u(‘g D0y=6<e=p® 6)(x) for some x € X. Hence ,u(g Mx)+e=2¢>1, and

) | is a (q,€ /\q) fuzzy ideal of X, it follows that 0, € /\qy(g 9 e

thus x.q /J(E ) Since Mg
0. € ,u(g 9 and 0:q ,u;f %) This is a contradiction. Therefore 0 € F. Assume that x * yeF and y€ F

for all x,y € X. Then ,uF )(x *y)=€= ,u(g 6)(y), which implies that

(65)(x*y)+£—5+£>1 and ,u(“”(y)+£:£+£>1,

(¢,6) (&,0) .

that is, (x * y)equp"" and yeq ,u(E 9 Since Mg is a (q,€ A q)-fuzzy ideal of X, it follows that

Xe = Xminfe,e} €N q,u;f 9 and so that ,u;f 6)(x) >¢. Hence x € F and F' is an ideal of X. O

If we take e =1 and 6 =0 in Theorems and (3.20] then we have the following corollary.

Corollary 3.21. A non-empty subset F of X is an ideal of X if and only if the characteristic
function yr of F is a (q,€ A q)-fuzzy ideal of X.

Theorem 3.22. Assume that
(¥ xe XXV te(0,1D(x e p® = 6<1-¢).

If F is an ideal of X, then the (¢,6)-characteristic fuzzy set /.L;f’(s) isa (q,eV q)-fuzzy ideal of X.
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Proof. Let x € X and ¢ € (0,1] be such that xtq,u(e 9 Then ,u(E’ﬁ)(x) >1-t =9, and so

(85)(x) =&> l—t Since 0 € F, we have ,u(”s)(O)+t —e+t>1—-t+t=1, that is, thu(‘g&).
Thus 0; € unF £9) Let x,y € X and t1,t2 € (0,1] be such that (x *y)thuF and y, q up
Then u(g Nxxy)+t1>1 and ,u(g 9(y) +ts > 1, which imply that u(g Nxxy)>1—-1t1 =6 and

(5 5)(y) >1—-t9=0. Hence ,u(g 5)(x xy)=€= ,ugf 5)(y), and so e >max{l1—¢1,1—t9}. Thus x xye F

(E )

and y € F. Since F is an ideal of X, we have x € F and thus ,u(g m(x) = £ which implies that
(E 5)(x) + mm{tl, to} = e+min{ty,t2} > 1, i.e., Xminft; 9} 9 ,u(g 9 1t follows that Xmin{t; 5} EV ,u;f 2

Therefore ,uF )isa (q,€V q)-fuzzy ideal of X. O

Theorem 3.23. Let €,6 € [0,1] such that € > max{d,0.5} and €+ < 1. If the (¢,0)-characteristic
fuzzy set u;f’(s) isa (q,€V q)-fuzzy ideal of X, then F is an ideal of X.

Proof. Assume that 0 ¢ F'. Then ,u(E M0y=6<e= (E 5)(x) for some x € X. Hence ,uF Dx)+e=

2¢ > 1, and thus x; q,uF 9 Since ,u(‘g 9 isa(q,ev q) fuzzy ideal of X, we get 0, € Vv qu(‘g ) which

(&,6) (,6 (£,6)

implies that 0 € u;™" or 0. q g’ ) If 0. € ,u(e 9 then ,u;f 9(0) = ¢, a contradiction. If 0. q uy"™",

then § + e = /J(E 5)(0) + &> 1 which is a contradiction. Therefore 0 € F'. Suppose that x * y € F and

yeF for all x,y € X. Then ,u(g (x * y)=€= ,u;f 5)(y), which implies that

86)(x*y)+€ e+e>1 and u(g‘s)(y)+£:£+£>1,

that is, (x * y)gq,uF ) and ygq,uF % Since ,uF’ )is a (q,e Vv q)-fuzzy ideal of X, it follows that
Xe = Xminie,e} € un;f 9 that is, (E )(x) > or ,u(g )(x) +e>1. If ,u(e 5)(x) >¢, then x € F. If

ue 5)(x) +€&>1, then ,u(g Mx)>1-¢€26 and so ,u(g 9(x) = ¢. Thus x € F, and therefore F is an
1deal of X. O

If we take € =1 and 6 = 0 in Theorems and [3.23| then we have the following corollary.

Corollary 3.24. A non-empty subset F of X is an ideal of X if and only if the characteristic
function yr of F is a (q,€V q)-fuzzy ideal of X.

Conclusions

We have introduced the notion of (¢,)-characteristic fuzzy sets in BCK/BCI-algebras. Given
an ideal F of a BCK/BCI-algebra X, we have provided conditions for the (¢,6)-characteristic
fuzzy set in X to be an (€,€ Vv q)-fuzzy ideal, an (€, q)-fuzzy ideal, an (€,€ A q)-fuzzy ideal, a
(q,q)-fuzzy ideal, a (q,€)-fuzzy ideal, a (q,€ Vv q)-fuzzy ideal and a (g, € A q)-fuzzy ideal. Using
the notions of (a, f)-fuzzy ideal ,ugf"s), we have investigated conditions for the F' to be an ideal of
X where (a, ) is one of (€,eVvq), (€,eAq), (€,9), (¢,€Vq), (q,€Nq), (q,€) and (q,q).
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