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Abstract. This paper deals with the motion of infinitesimal mass around primaries whose are
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1. Introduction
The restricted three-body problem has a wider range of application as compared to the
general three body problem in space dynamics, celestial mechanics and analytical dynamics.
The elliptical restricted three body problem (ER3BP) model, the motion of infinitesimal mass
which moves under the influence of two massive bodies revolving around their common centre of
mass in an elliptical orbit, being influenced but not influencing the two primaries. The circular
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restricted three body problem has been generalized by the introduction of the elliptic orbit, thus
improving its applicability and retaining some useful properties of the circular model suitable to
the elliptical case. Various authors [1], [6], [7], [10], [11], [12], [13], [16], [17], [19], [20], [21], [23],
[24] and [27] have studied the effects of radiation pressure on the motion of the infinitesimal
body by taking one or both primaries as a source of radiation.

The bodies in celestial model of the problem were considered as spherical, but many celestial
bodies are either oblate spheroids or triaxial or both, and not spheres. For instance, the mars,
Jupiter, Saturn, Neutron stares, Regulus and white dwarfs are oblate spheroids, where as
the Moon and Pluto and its moon Charon are triaxial. This oblateness and triaxiality of
primaries causes perturbations in the system. That is why many researchers have included
these charecterisations in their study of elliptical restricted three-body problem. The study of
existence and stability of L4 and L5 have been conducted [14] under the assumption that both
the primaries are radiating and triaxial. The characteristic exponents of triangular solutions in
ER3BP has been analyzed [15]. The study of collinear point have been conducted [4], [9], [18],
[22], [25].

The study of motion of infinitesimal around the collinear point is useful for spacecraft
mission. These are the suitable to set permanent observatories of the Sun, the magnetosphere of
the Earth links with the hidden part of the Moon and others [8]. In this paper, we have derived
location of collinear points and their stability around binary system when the primaries are
radiating as well as triaxial. The study of the stability of infinitesimal around the collinear
points are important as these point can serve as a possible fuel depot for future space probe in
the lunar mission.

2. Equation of Motion
The differential equations of motion of the infinitesimal mass in the elliptical restricted three
body problem (ER3BP) under radiating and triaxial primaries in a barycentric, pulsating system
are given below Narayan et al. [14]. The differential equation of motion of the third body in
non-dimensional barycentre, pulsating and non-uniformly rotating coordinate system (x, y) is
written in the form:

x′′−2y′ = 1
1+ ecosν

(
∂Ω

∂x

)
; y′′+2x′ = 1

1+ ecosν

(
∂Ω

∂y

)
, (1)

where ′ denotes differentiation with respect to ν, and

Ω= x2 + y2

2
+ 1

n2

[
(1−µ)q1

r1
+ µq2

r2
+ (1−µ)(2σ1 −σ2)q1

2r3
1

+ µ(2σ′
1 −σ′

2)q2

2r3
2

−3(1−µ)(σ1 −σ2)y2q1

2r5
1

− 3µ(σ′
1 −σ′

2)y2q2

2r5
2

]
(2)

where

n2 = 1+ 3
2

(2σ1 −σ2)+ 3
2

(2σ′
1 −σ′

2); r2
1 = (x+µ)2 + y2; r2

2 = (x+µ−1)2 + y2; µ= m2

m1 +m2
, (3)

where m1 and m2 are masses of the primaries. q1, q2 are the radiation pressure parameters.
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σ1, σ2, σ′
1 and σ′

2 are triaxial parameters, while e and ν are the eccentricity of orbits and true
anomaly one of the primaries, respectively.

Then equation (1) can be written as:

x′′−2y′ = 1
1+ ecosν

{
x

[(
1−k+ 3(1−µ)(σ1 −σ2)q1

n2r5
1

+ 3µ(σ′
1 −σ′

2)q2

n2r5
2

)]

− µ(1−µ)
n2

[
q1

r3
1
− q2

r3
2
+ 3(2σ1 −σ2)q1

2r5
1

− 3(2σ′
1 −σ′

2)q2

2r5
2

− 15(σ1 −σ2)y2q1

2r7
1

+15(σ′
1 −σ′

2)y2q2

2r7
2

]}
(4)

and

y′′+2x′ = 1
1+ ecosν

(1−k), (5)

where

k = 1
n2

[
(1−µ)q1

r3
1

+ µq2

r3
2

+ 3(1−µ)(2σ1 −σ2)q1

2r5
1

+ 3µ(2σ′
1 −σ′

2)q2

2r5
2

−15(1−µ)(σ1 −σ2)y2q1

2r7
1

− 15µ(σ′
1 −σ′

2)y2q2

2r7
2

]
. (6)

3. Location of Collinear Equilibrium Points
The collinear equilibrium points of the system are the saddle points. The points where the
resources consumed minimally is referred as equilibrium points of the system. So they are
represented as follows:

∂Ω

∂x
= 0,

∂Ω

∂y
= 0 ,

 (7)

where Ω is given by the equation (2), but the collinear points lies on x-axis; hence are given by
the conditions:

∂Ω

∂x
= 0,

∂Ω

∂y
= 0, y= 0 . (8)

Therefore using the above condition we get:

f (x)=
{

x− 1
n2

[
(1−µ)(x+µ)q1

r3
1

+ µ(x−1+µ)q2

r3
2

+ 3(1−µ)(x+µ)(2σ1 −σ2)q1

2r5
1

+3µ(x−1+µ)(2σ′
1 −σ′

2)q2

2r5
2

]}
= 0 . (9)

There are three collinear equilibrium points. These are denoted by L1, L2 and L3. The L1 lies
between bigger and smaller primary (−µ< x < 1−µ); L2, lying to the right of smaller primary
(x > 1−µ) and L3, lying to the left of the bigger primary (x <−µ).
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3.1 Location of L1

In order to find the solution for L1, substituting x = x2 −ρ = 1−µ−ρ, such that r2 = ρ and
r1 = 1−ρ in equation (9), we have:

1−µ−ρ− 1
n2

{
(1−µ)q1

(1−ρ)2 − µq2

ρ2 + 3(1−µ)(2σ1 −σ2)q1

2(1−ρ)4 − 3µ(2σ′
1 −σ′

2)q2

2ρ4

}
= 0 , (10)

where q1 = 1−ε′1, q2 = 1−ε′2.
Now, rearranging the terms in equation (10), after simplification, we get:

n2(1−ρ)5 − (1−ρ)2q1 − 3
2 (2σ1 −σ2)q1

(1−ρ)4 =− µ

1−µ
[ q2 +

3
2 (2σ′

1−σ′
2)q2

ρ

2
−n2ρ3

ρ2

]
(11)

on simplifying, we get:

ρ3

1−
{−3−5(2σ1 −σ2)−8(2σ′

1 −σ′
2)− 5

3ε
′
1
}
ρ{

1+ 5
2 (2σ1 −σ2)+2(2σ′

1 −σ′
2)− ε′1

3

} +
{−10

3 +5(2σ1 −σ2)+3(2σ′
1 −σ′

2)− 4
3ε

′
1
}
ρ2{

1+ 5
2 (2σ1 −σ2)+2(2σ′

1 −σ′
2)− ε′1

3

}


= µ

3(1−µ)

{
1+15(2σ′

1 −σ′
2)+ε′2

}{
1+ 5

2 (2σ1 −σ2)+2(2σ′
1 −σ′

2)− ε′1
3

}
× (1−ρ)4

[
1−30(2σ′

1 −σ′
2)ρ+ 45(2σ′

1 −σ′
2)ρ2

2
−{

n2 +6(2σ′
1 −σ′

2)
}
ρ3

]
. (12)

Now, let µ

3(1−µ)

{
1+15(2σ′

1 −σ′
2)+ε′2

}{
1+ 5

2 (2σ1 −σ2)+2(2σ′
1 −σ′

2)− ε′1
3

}


1/3

=λ (13)

then, we have

ρ3

1−
{−3−5(2σ1 −σ2)−8(2σ′

1 −σ′
2)− 5

3ε
′
1
}
ρ{

1+ 5
2 (2σ1 −σ2)+2(2σ′

1 −σ′
2)− ε′1

3

} +
{−10

3 +5(2σ1 −σ2)+3(2σ′
1 −σ′

2)− 4
3ε

′
1
}
ρ2{

1+ 5
2 (2σ1 −σ2)+2(2σ′

1 −σ′
2)− ε′1

3

}


=λ3(1−ρ)4
[

1−30(2σ′
1 −σ′

2)ρ+ 45(2σ′
1 −σ′

2)ρ2

2
−{

n2 +6(2σ′
1 −σ′

2)
}
ρ3

]
. (14)

Using the series expansion given as follows:

ρ =λ
(
1+ c1λ+ c2λ

2 + . . .
)
. (15)

Using the series as in equation (15) into the equation (14), the value of ρ is given as follows:

ρ =λ

1− 1
3

{
1+15(2σ1 −σ2)+46(2σ′

1 −σ′
2)+ ε′1

3

}
{
1+ 5

2 (2σ1 −σ2)+2(2σ′
1 −σ′

2)− ε′1
3

} λ

−1
9

{
1+270(2σ1 −σ2)+ 2031

2 (2σ′
1 −σ′

2)− 44ε′1
3

}
{
1+ 5

2 (2σ1 −σ2)+2(2σ′
1 −σ′

2)− ε′1
3

}2 λ2 + . . .

 . (16)
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Hence, the solution for collinear point L1 is given by

x = 1−µ−λ

1− 1
3

{
1+15(2σ1 −σ2)+46(2σ′

1 −σ′
2)+ ε′1

3

}
{
1+ 5

2 (2σ1 −σ2)+2(2σ′
1 −σ′

2)− ε′1
3

} λ

−1
9

{
1+270(2σ1 −σ2)+ 2031

2 (2σ′
1 −σ′

2)− 44ε′1
3

}
{
1+ 5

2 (2σ1 −σ2)+2(2σ′
1 −σ′

2)− ε′1
3

}2 λ2 + . . .

 . (17)

3.2 Location of L2

To find the location of L2, putting x = x2 +ρ such that r2 = ρ and r1 = 1+ρ in equation (9), we
get:

1−µ+ρ− 1
n2

{
(1−µ)q1

(1+µ)2 + µq2

ρ2 + 3(1−µ)(2σ1 −σ2)q1

2(1+ρ)4 + 3µ(2σ′
1 −σ′

2)q2

2ρ4

}
= 0. (18)

Rearranging the terms, we get:

n2(1+ρ)5 − (1+ρ)2q1 − 3
2 (2σ1 −σ2)q1

(1+ρ)4 = µ

1−µ
[ q2 +

3
2 (2σ′

1−σ′
2)q2

ρ2 −n2ρ3

ρ2

]
. (19)

Simplifying the above equation we get:

ρ3

[
1+

{
3+5(2σ1 −σ2)+2(2σ′

1 −σ′
2)− 5

3ε
′
1
}
ρ{

1+3(2σ1 −σ2)+ 5
2 (2σ′

1 −σ′
2)+ε′1

} +
{10

3 +5(2σ1 −σ2)+7(2σ′
1 −σ′

2)+ 4
3ε

′
1
}
ρ2{

1+3(2σ1 −σ2)+ 5
2 (2σ′

1 −σ′
2)+ε′1

} ]

= µ

3(1−µ)

{
1+15(2σ′

1 −σ′
2)−ε′2

}{
1+3(2σ1 −σ2)+ 5

2 (2σ′
1 −σ′

2)+ε′1
}

× (1+ρ)4

[
1−30(2σ′

1 −σ′
2)ρ+ 45(2σ′

1 −σ′
2)ρ2

2
−{

n2 +6(2σ′
1 −σ′

2)
}
ρ3

]
(20)

Let [
µ

3(1−µ)

{
1+15(2σ′

1 −σ′
2)−ε′2

}{
1+3(2σ1 −σ2)+ 5

2 (2σ′
1 −σ′

2)+ε′1
}]1/3

=λ (21)

Using series given in equation (15), the ρ can be given as follows:

ρ =λ

1− 1
3

{
1+7 (2σ1 −σ2)−22(2σ′

1 −σ′
2)+ 17ε′1

3

}
{
1+3(2σ1 −σ2)+ 5

2 (2σ′
1 −σ′

2)+ε′1
} λ

−1
9

{
1+7(2σ1 −σ2)+41(2σ′

1 −σ′
2)− 179ε′1

3

}
{
1+3(2σ1 −σ2)+ 5

2 (2σ′
1 −σ′

2)+ε′1
}2 λ2 + . . .

 . (22)

Hence the solution for L2 is given by:

x = 1−µ+λ

1− 1
3

{
1+7 (2σ1 −σ2)−22(2σ′

1 −σ′
2)+ 17ε′1

3

}
{
1+3(2σ1 −σ2)+ 5

2 (2σ′
1 −σ′

2)+ε′1
} λ
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−1
9

{
1+7(2σ1 −σ2)+41(2σ′

1 −σ′
2)− 179ε′1

3

}
{
1+3(2σ1 −σ2)+ 5

2 (2σ′
1 −σ′

2)+ε′1
}2 λ2 + . . .

 . (23)

3.3 Location of L3

In order to find the solution for L3, substituting x = x1 −ρ such that r1 = ρ and r2 = 1+ρ in
equation (9), we get

µ

1−µ =
[
n2ρ3 − q1 − 3(2σ1−σ2)q1

2ρ2

]
(1+ρ)2

ρ2
[
q2 + 3(2σ′

1−σ′
2)q2

2(1+ρ)2
−n2(1+ρ)3

] (24)

Let, ρ = 1+α and using the elementary algorithm for division upto
[
α4], so the equation (24)

can be written as follows:
µ

1−µ =
[{

−4ε′1
7

+ 3
14

(2σ1 −σ2)− 6
7

(2σ′
1 −σ′

2)
}

+
(
−12α

7

){
1− 26ε′1

21
+ 145

56
(2σ1 −σ2)+ 1

7
(2σ′

1 −σ′
2)

}
+

(
−12α

7

)2 {
1− 139ε′1

84
+ ε′2

6
+ 1801

336
(2σ1 −σ2)+ 3379

672
(2σ′

1 −σ′
2)

}
+

(
−12α

7

)3 {
1567
1728

− 7316876 ε′1
4148928

+ 23ε′2
48

+ 31547082
4148928

(2σ1 −σ2)

+4512629079
406594944

(2σ′
1 −σ′

2)
}
+Ω(

α4)+ . . .
]

. (25)

Now, by using Lagrange inversion formula and successive approximation [3], and retaining only
linear terms in ε′1, ε′2, σ1, σ2, σ′

1 and σ′
2 we have:

ρ =
[
1−

{
−ε

′
1

3
+ 1

8
(2σ1 −σ2)− 1

2
(2σ′

1 −σ′
2)

}
− 7

12

{
1− 1471ε′1

1008
− 1577752976

1000000000
(2σ1 −σ2)− 2815

672
(2σ′

1 −σ′
2)

}(
µ

1−µ
)

− 7
12

{1313ε′1
1008

− 1313
2688

(2σ1 −σ2)+ 2465
672

(2σ′
1 −σ′

2)
}(

µ

1−µ
)2

− 7
12

{2910383598ε′1
1000000000

− 8801
8064

(2σ1 −σ2)+ 8801
2016

(2σ′
1 −σ′

2)
}(

µ

1−µ
)3

+Ω
(

µ

1−µ
)4

+ . . .
]

(26)
Hence solution for collinear point L3 is as follows:

x =−µ−
[
1−

{
−ε

′
1

3
+ 1

8
(2σ1 −σ2)− 1

2
(2σ′

1 −σ′
2)

}
− 7

12

{
1− 1471ε′1

1008
− 1577752976

1000000000
(2σ1 −σ2)− 2815

672
(2σ′

1 −σ′
2)

}(
µ

1−µ
)

− 7
12

{1313ε′1
1008

− 1313
2688

(2σ1 −σ2)+ 2465
672

(2σ′
1 −σ′

2)
}(

µ

1−µ
)2
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− 7
12

{2910383598ε′1
1000000000

− 8801
8064

(2σ1−σ2)+ 8801
2016

(2σ′
1 −σ′

2)
}(

µ

1−µ
)3
+Ω

(
µ

1−µ
)4]

. (27)

4. Linear Stability of Collinear Points
The stability of motion of the infinitesimal mass near the collinear equilibrium points is analyzed
using the following lemma [26], defines the stability of motion of the collinear points. some
modification have been incorporating in lemma for adapting to the present problem.

Lemma. It states that, at collinear points:

k = 1
n2

[
(1−µ)q1

r3
1

+ µq2

r3
2

+ 3(1−µ)(2σ1 −σ2)q1

2r5
1

+ 3µ(2σ′
1 −σ′

2)q2

2r5
2

−15(1−µ)(σ1 −σ2)y2q1

2r7
1

− 15µ(σ′
1 −σ′

2)y2q2

2r7
2

]
> 1. (28)

Proof. For an equilibrium point we have the condition [14]:

x− 1
n2

[
(1−µ)(x+µ)q1

r3
1

+ µq2

r3
2

+ 3(1−µ)(x+µ)(2σ1 −σ2)q1

2r5
1

+3µ(x−1+µ)(2σ′
1 −σ′

2)q2

2r5
2

− 15(1−µ)(x+µ)(σ1 −σ2)y2q1

2r7
1

− 15µ(x−1+µ)(σ′
1−σ′

2)y2q2

2r5
2

]
=0.

(29)
The collinear points lie on x-axis, hence y= 0. Therefore, equation (29) become

x− 1
n2

[
(1−µ)(x+µ)q1

r3
1

+ µ(x−1+µ)q2

r3
2

+ 3(1−µ)(x+µ)(2σ1−σ2)q1

2r5
1

+ 3µ(x−1+µ)(2σ′
1−σ′

2)q2

2r5
2

]
= 0.

(30)
Now, rearranging the terms, the above equation (30), which can be written as follows:

1
n2

{
(1−µ)(x+µ)(r1 − r−2

1 q1)
r1

+ µ(x+µ−1)(r2 − r−2
2 q2)

r2
+ 3(1−µ)(x+µ)(2σ1 −σ2)(r1 − r−4

1 q1)
2r1

+3µ(x+µ−1)(2σ′
1 −σ′

2)(r2 − r−2
2 q2)

2r2

}
= 0. (31)

Now, to prove equation (28), we analyze each collinear equilibrium point separately.

4.1 Stability at Collinear Point L1

At collinear point L1, r1 + r2 = 1, where r1 = x+µ and r2 = 1− x−µ . using these values in
equation (31) and simplifying using equation (6), we get:

1
n2

[{
1−k+ 3(1−µ)(2σ1 −σ2)

2
+ 3µ(2σ′

1 −σ′
2)

2

}
r1 −µ

{
1− µq2

r3
2

+ 3(2σ′
1 −σ′

2)
2

− 3(2σ′
1 −σ′

2)q2

2r5
2

}]
=0.

Since r2 < 1 and 1
n2 6= 0. Hence we have:

k = 1+
[
µ

r1

{
q2

r3
2
− 3(2σ′

1 −σ′
2)

2
+ 3(2σ′

1 −σ′
2)q2

2r5
2

−1

}
+ 3(1−µ)(2σ1 −σ2)

2
+ 3µ(2σ′

1 −σ′
2)

2

]
. (32)
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If ε′1, ε′2, σ1, σ2, σ′
1 and σ′

2 are negligible, then k > 1 for L1,causing failure of stability condition.

4.2 Stability at Collinear Point L2

For collinear point L2, r1 − r2 = 1, where r1 = x+µ and r2 = x+µ−1. substituting these values
in equation (31) and simplifying using equation (6), we get:

1
n2

[{
1−k+ 3(1−µ)(2σ1 −σ2)

2
+ 3µ(2σ′

1 −σ′
2)

2

}
r1 −µ

{
1− q2

r3
2
+ 3(2σ′

1 −σ′
2)

2
− 3(2σ′

1 −σ′
2)q2

2r5
2

}]
=0.

Since r2 < 1 and 1
n2 ?0. Hence we have:

k = 1+
[
µ

r1

{
q2

r3
2
− 3(2σ′

1 −σ′
2)

2
+ 3(2σ′

1 −σ′
2)q2

2r5
2

−1

}
+ 3(1−µ)(2σ1 −σ2)

2
+ 3µ(2σ′

1 −σ′
2)

2

]
. (33)

If ε′1, ε′2, σ1, σ2, σ′
1 and σ′

2 are negligible, then k > 1 for L2.

4.3 Stability at Collinear Point L3

Similarly for collinear point L3, r2 − r1 = 1, where r1 = −x−µ and r2 = −x−µ−1. Inserting
these values in equation (31) and simplifying using equation (6), we have:

1
n2

[{
k−1− 3(1−µ)(2σ1−σ2)

2
−3µ(2σ′

1−σ′
2)q2

}
r1 −µ

{
1− q2

r3
2
+ 3(2σ′

1 −σ′
2)

2
− 3(2σ′

1 −σ′
2)q2

2r5
2

}]
= 0.

Since r2 < 1 and 1
n2 6= 0. Hence we have:

k = 1+
[
µ

r1

{
1− q2

r3
2
+ 3(2σ′

1 −σ′
2)

2
− 3(2σ′

1 −σ′
2)q2

2r5
2

−1

}
+ 3(1−µ)(2σ1 −σ2)

2
+ 3µ(2σ′

1 −σ′
2)q2

2

]
.

(34)

If ε′1, ε′2, σ1, σ2, σ′
1 and σ′

2 are negligibly small, then k > 1 for L3.
Hence for all collinear points, we have k > 1. This completes the proof of lemma.

Now in order to analyse the stability motion of primaries near collinear points, investigating
the roots of the characteristic equations. For this assuming, that particle gets a small
displacement from the equilibrium position. Then finding the variational equations of motion
by inserting the coordinates of displaced point in the equation of motion (1) and expanding by
Taylor’s series about the collinear points and taking only the linear terms, we have the following
equation [14] as:

ξ′′−2η′ =;[
ξΩ0

xx +ηΩ0
xy

]
, η′′+2ξ′ =;[

ξΩ0
yx +ηΩ0

yy
]
, (35)

where ; = [ 1
1+ecosν

]
and (x0, y0) are the coordinates of the collinear points, respectively. The

subscript of Ω denotes second order partial derivative of Ω with respect to x, y. Because all
collinear points lies on x-axis, hence y= 0. Hence the values of Ωxx, Ωyy and Ωxy are written as:

Ωxx = 1− 1
n2

[
(1−µ)q1

r3
1

− 3(1−µ)q1

r3
1

+ µq2

r3
2

− 3µq2

r3
2

+ 3(1−µ)(2σ1 −σ2)q1

2r5
1

−15(1−µ)(2σ1 −σ2)q1

2r5
1

+ 3µ(2σ′
1 −σ′

2)q2

2r5
2

− 15µ(2σ′
1 −σ′

2)q2

2r5
2

]
, (36)
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Ωyy = 1− 1
n2

[
(1−µ)q1

r3
1

+ µq2

r3
2

+ 3(1−µ)(2σ1 −σ2)q1

2r5
1

+ 3µ(2σ′
1 −σ′

2)q2

2r5
2

+3(1−µ)(2σ1 −σ2)q1

r5
1

+ 3µ(2σ′
1 −σ′

2)q2

r5
2

]
(37)

and

Ωxy = 0 . (38)

Now, in order to investigate the stability of the motion of collinear points, new variables given
by the equation below are introduced as:

x1 = ξ, x2 = η, x3 = dξ
dν

, x4 = dη
dν

.

Substituting these values in equation (35), the system of equations takes the form:
dxi

dν
= Pi1x1 +Pi2x2 +Pi3x3 +Pi4x4; i = 1,2,3,4, (39)

where P11 = P12 = P13 = P14 = P22 = P23 = P33 = P44 = 0
P13 = 1, P24 = 1, P34 = 2, P43 =−2.

Then, we get:

P31 = 1
(1+ ecosν)

Ω0
xx =φΩ0

xx,

P42 = 1
(1+ ecosν)

Ω0
yy =φΩ0

yy.

The coefficient in the system of equation (39), are the periodic functions of ′ν′ with period 2π.
Taking the average over the system, we get:

dx(0)
i

dν
= P (0)

i1 x(0)
1 +P (0)

i2 x(0)
2 +P (0)

i3 x(0)
3 +P (0)

i4 x(0)
4 , (40)

where P (0)
is = 1

2π
∫ 2π

0 Pis(ν)dν, i, s = 1,2,3,4.
Hence, we get

P0
31 =

1p
1− e2

Ω0
xx,

P0
42 =

1p
1− e2

Ω0
yy,

where subscript ‘0’, wherever appears indicates the value of the corresponding collinear points
L1, L2, L3.

The characteristic equation for the system is:

λ4 +Qλ2 +R = 0, (41)

where

Q =−(4−P (0)
31 +P (0)

42 ); R = P (0)
31 P (0)

42 . (42)

The motion of the infinitesimal particle will be stable near the collinear points, when given
a small displacement and small velocity, the particle oscillates for a considerable time about the
points. The system will be stable if the roots of characteristic equation are purely imaginary [9].
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Therefore the condition for stable roots can be given as:

Q < 0; R > 0

Taking the second inequality, the condition of stability can be written as:
−1
2

− 3(2σ1 −σ2)
4

− 3(2σ′
1 −σ′

2)
4

− 3(1−µ)(2σ1 −σ2)
2r5

1
− 3µ(2σ′

1 −σ′
2)

2r5
2

< k < 1+ 3(2σ1 −σ2)
2

+ 3(2σ′
1 −σ′

2)
2

− 3(1−µ)(σ1 −σ2)
r5

1
− 3µ(σ′

1 −σ′
2)

r5
2

.

If ε′1, ε′2, σ1, σ2, σ′
1 and σ′

2 are negligible, then
−1
2

< k < 1 . (43)

But from the above discussion, it can be empirically stated that for all the collinear equilibrium
points, we have k > 1. hence the collinear points, L1, L2, L3 are unstable using the condition
given in equation (43).

Now, the roots of the characteristic equation (41) are represented by as follows:

λ2
1,2 =



[
k−2(1− e2)+ 3(1−µ)(2σ1−σ2)

r5
1

+ 3µ(2σ1
′−σ2

′)
r5

2

]
±

[
9k2 −8k+ 18(1−µ)k(2σ1−σ2)

r5
1

+ 18µk(2σ′
1−σ′

2)
r5

2
− 24(1−µ)(2σ1−σ2)

r5
1

− 24µ(2σ1
′−σ2

′)
r5

2

+8e2
{

1+ k
2 + 3(1−µ)(2σ1−σ2)

2r5
1

+ 3µ(2σ1
′−σ2

′)
2r5

2

}]1/2


2
p

1− e2
(44)

If λ2
i =σi , i = 1,2. Then, the equation (44) can be represented as:

σ1 =



[
k−2(1− e2)+ 3(1−µ)(2σ1−σ2)

r5
1

+ 3µ(2σ′
1−σ′

2)
r5

2

]
+

[
9k2 −8k+ 18(1−µ)k(2σ1−σ2)

r5
1

+ 18µk(2σ′
1−σ′

2)
r5

2
− 24(1−µ)(2σ1−σ2)

r5
1

− 24µ(2σ′
1−σ′

2)
r5

2

+8e2
{

1+ k
2 + 3(1−µ)(2σ1−σ2)

2r5
1

+ 3µ(2σ′
1−σ′

2)
2 r5

2

}]1/2


2
p

1− e2
(45)

and

σ2 =



[
k−2(1− e2)+ 3(1−µ)(2σ1−σ2)

r5
1

+ 3µ(2σ′
1−σ′

2)
r5

2

]
−

[
9k2 −8k+ 18(1−µ)k(2σ1−σ2)

r5
1

+ 18µk(2σ′
1−σ′

2)
r5

2
− 24(1−µ)(2σ1−σ2)

r5
1

− 24µ(2σ′
1−σ′

2)
r5

2

+8e2
{

1+ k
2 + 3(1−µ)(2σ1−σ2)

2r5
1

+ 3µ(2σ′
1−σ′

2)
2r5

2

}]1/2


2
p

1− e2
. (46)

Since, for collinear points k > 1. Hence for σ1,σ2 < 1, e < 1, we get:[
9k2 −8k+ 18(1−µ)k(2σ1 −σ2)

r5
1

+ 18µk(2σ′
1 −σ′

2)

r5
2

− 24(1−µ)(2σ1 −σ2)
r5

1
− 24µ(2σ′

1 −σ′
2)

r5
2
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+8e2

{
1+ k

2
+ 3(1−µ)(2σ1 −σ2)

2r5
1

+ 3µ(2σ′
1 −σ′

2)

2r5
2

}]
> 1 . (47)

As λ2 = s, from equation (45), σ1 > 0 and it gives two real roots of opposite signs, similarly
from equation (46), σ2 < 0 and it provides two imaginary roots. Therefore, the solution for
equation (44) can be given as:

λi = Ci1ε
p1ν+Ci2ε

p2ν+Ci cos(p3ν−Ci4), i = 1,2, (48)

where p1, p2, p3 are the roots of equation (41). The first and second term of equation (48) show
the exponential growth in the value of the roots of λi and dominates the third term. Hence from
equation (45) and (46), it is clear that the motion is unstable near collinear points.

  
  

Figure 1. Correlation of characteristic root λ1 and ε′1 for L1 (σ1 = 0.0005, σ2 = 0.0002 to 0.0004,
σ′

1 = 0.0005, σ′
2 = 0.0002, ε′2 = 0.002)

  
 
 
 
 
 
 
 
 
 
 
  

Figure 2. Correlation of characteristic root λ1 and ε′2 for L1 (σ1 = 0.001, σ2 = 0.002 to 0.004,σ′
1 = 0.001,

σ′
2 = 0.002, ε′1 = 0.002)
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Figure 3. Correlation of characteristic root λ1and ε′2 for L1 (σ1 = 0.001, σ2 = 0.002, σ′
1 = 0.0005 to 0.004,

σ′
2 = 0.002, ε′2 = 0.002)

  
  

Figure 4. Correlation of characteristic root λ1and ε′1 for L1 (σ1 = 0.001, σ2 = 0.002, σ′
1 = 0.0005 to 0.004,

σ′
2 = 0.002, ε′1 = 0.002)

  
  

Figure 5. Correlation of characteristic root λ1and ε′1 for L2 (σ1 = 0.0003, σ2 = 0.0004 to 0.0006,
σ′

1 = 0.0001, σ′
2 = 0.0002, ε′2 = 0.002)
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Figure 6. Correlation of characteristic root λ1and ε′2 for L2 (σ1 = 0.0003, σ2 = 0.0004 to 0.0006,
σ′

1 = 0.0001, σ′
2 = 0.0002, ε′1 = 0.002)

  
  

Figure 7. Correlation of characteristic root λ1 and ε′2 for L2 (σ1 = 0.0003, σ2 = 0.0002, σ′
1 = 0.0004 to

0.0006, σ′
2 = 0.0002, ε′1 = 0.002)

  
  

Figure 8. Correlation of characteristic root λ1 and ε′1 for L2 (σ1 = 0.0003, σ2 = 0.0002, σ′
1 = 0.0004 to

0.0006, σ′
2 = 0.0002, ε′2 = 0.002)
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Figure 9. Correlation of characteristic root λ2
1 and ε′1 for L3 (σ1 = 0.003, σ2 = 0.002, σ′

1 = 0.003 to 0.005,
σ′

2 = 0.002, ε′2 = 0.002)

  
 
 Figure 10. Correlation of characteristic root λ2

1 and ε′1 for L3 (σ1 = 0.003 to 0.005, σ2 = 0.002, σ′
1 = 0.003,

σ′
2 = 0.002, ε′2 = 0.002)

5. Conclusion
The formula derived in this paper can be applied to the binary system as two primaries and a
space craft as third body.

(i) The motion around the collinear point L1 is unstable for different values of ε′1, ε′2, σ1,
σ2, σ′

1 and σ′
2 as k > 1 and λ2

1 > 0, λ2
2 < 0. This can be analysed from Figure 1, Figure 2,

Figure 3 and Figure 4.

(ii) The collinear point L2 also shows the instability of motion in its vicinity as k > 1 and
λ2

1 > 0, λ2
2 < 0. This is evident from Figure 5, Figure 6, Figure 7 and Figure 8 for different

values of ε′1, ε′2, σ1, σ2, σ′
1 and σ′

2.

(iii) The motion of infinitesimal around L3 is stable for some values of ε′1, ε′2, σ1, σ2, σ′
1 and

σ′
2 because λ2

1,2 < 0 as well as k < 1. It is also observed that increment in values of ε′1, ε′2,
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σ1, σ2, σ′
1 and σ′

2 tends the system to be unstable. This can be seen from Figure 9 and
Figure 10 as roots become imaginary.

For different values of ε′1, ε′2, σ1, σ2, σ′
1 and σ′

2 our result is in conformity of the results of
Usha and Narayan [25] and Narayan and Singh [18]. The existence and stability of collinear
equilibrium points of the elliptic restricted three body problem with different conditions has
been analysed. The figures are drawn using MATLAB R2016a.

Hence we arrived at the conclusion that motion around collinear point L1 and L2 are
unstable, while motion around L3 is conditionally stable for some values of ε′1, ε′2, σ1, σ2, σ′

1.
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