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Abstract. A 2D dynamical system exhibiting a double-zero bifurcation with symmetry of order
two is considered. This bifurcation involves the presence in the parameter space of a curve
corresponding either to double homoclinic or to heteroclinic bifurcations. In this paper we derive
second order approximations for the homoclinic orbits and for the curve of homoclinic bifurcation
values considering the system truncated up to five order terms and parameter-dependent coefficients.
These approximations were obtained using the regular perturbation method. These formulae are
applied to a Liénard system, which develops a double-zero bifurcation with symmetry of order two
for some parameters values. Second order approximations for the heteroclinic orbits of this system
are also given. The analytical results are very accurate and they are in good accordance with the
numerical ones.
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1. Introduction
Consider a two-dimensional system

ẋ = f (x,α), x ∈R2, α ∈R2 (1.1)

with a smooth f , which has at α= 0 the equilibrium x = 0 with two zero eigenvalues.
System (1.1) exhibits a double-zero with symmetry of order two bifurcation at α= 0 if it is

locally topological equivalent around the origin to

ẋ = y, (1.2)

ẏ=µ1x+µ2 y+ ∑
k≥1

(a2k+1x2k+1 +b2k+1x2k y),

where µ1, µ2, are real parameters and the coefficients ak,bk ∈R satisfy the condition a3b3 6= 0.
Using transformations of time and variables, system (1.2) can be written as

ẋ = y,

ẏ=β1x+β2 y+σx3 − x2 y+O(|(x, y)|5), (1.3)

where σ=±1. System (1.3) is the normal form for this codimension two bifurcation.
In the case σ=−1 the bifurcation diagram is given in Figure 1 [6]. In this figure, H1 and H2

contain Hopf bifurcation values, R+ and R− contain pitchfork bifurcation values, B contains
saddle-node bifurcation of periodic orbits values and HL contains homoclinic bifurcation values.
The first order asymptotic approximation of the curve HL is [6]:

HL =
{
β

∣∣∣β2 = 4
5
β1 +O(β3/2

1 ), β1 > 0
}

. (1.4)

Figure 1. The bifurcation diagram for the double-zero bifurcation, case σ=−1.
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For parameters on the curve HL, system (1.3) has a pair of homoclinic orbits to the origin,
which is a saddle point.

In the case σ= 1 the bifurcation diagram is given in [6], [15]. It involves the presence of a
curve of heteroclinic bifurcation values, whose first order asymptotic approximation is:

HT =
{
β

∣∣∣β2 =−1
5
β1 +O(β3/2

1 ), β1 < 0
}

. (1.5)

For parameters on the curve HT , system (1.3) has a pair of heteroclinic orbits connecting two
saddle points.

Generally, it is difficult to find analytic expressions for homoclinic and heteroclinic orbits of
a dynamical system. Asymptotic methods (such as the elliptic averaging method, the hyperbolic
perturbation method, or the regular perturbation method), can be used to detect the presence
of these type of orbits, to determine parameter values for which such orbits exist, and to find
asymptotic approximations for these orbits. Such results, in various settings, can be found in
[2], [3],[4], [5], [8], [9], [10].

Homoclinic orbits bifurcation are involved in specific local bifurcations, as the Bogdanov-
Takens bifurcation. Approximations of the homoclinic orbits in the case of the nondegenerated
Bogdanov-Takens bifurcation can be found in [1], [12], [13], [17].

For a degenerate Bogdanov-Takens bifurcation, asymptotic approximations of homoclinics
are given in our previous paper [14], where the computations were done in a particular case,
considering the normal form truncated up to third order terms and with coefficients that do not
depend on the parameters. In Section 2 of the present paper we extend the study of homoclinics,
considering the normal form (1.2) truncated up to five order terms and parameter-dependent
coefficients. In Section 3 we apply the formulae obtained in Section 2 to a Liénard system.
In addition to approximations of homoclinic orbits and homoclinic bifurcation values curve
for this system, we also give explicit formulae of second order approximations of heteroclinic
orbits and heteroclinic bifurcation values curve using results in our paper [15]. Finally, some
conclusions are given.

2. Approximations of Homoclinic Orbits
Assume that the coefficients in (1.2) are expressed around the bifurcation value (µ1,µ2)= (0,0)
as functions of the bifurcation parameters µ1, µ2 as:

a3 =σa+a10µ1 +a01µ2 +O(|µ|2),

b3 =−b−b10µ1 −b01µ2 +O(|µ|2),

a5 = c+O(|µ|),
b5 =−d+O(|µ|), (2.1)

where a, b, c, d, a10, a01, b10, b01 are real constants and a > 0, b > 0, σ=±1. Thus, system
(1.2) reads:

ẋ = y,

ẏ=µ1x+µ2 y+σax3 −bx2 y+ g
(
µ1,µ2, x, y

)+ . . . , (2.2)

with g
(
µ1,µ2, x, y

)= (a10µ1 +a01µ2)x3 − (b10µ1 +b01µ2)x2 y+ cx5 −dx4 y .
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In our previous paper [14] we treated the particular case when σ = −1, a = b = 1, and
g(µ1,µ2, x, y)≡ 0. Obviously the normal form (1.2) was truncated up to order three terms with
coefficients ai , bi that do not depend on the bifurcation parameters µ1, µ2. In [15] we treated
the general case when σ= 1, with parameter-dependent coefficients.

In the following we complete our study, for σ = −1 in the general case, considering the
system truncated up to five order terms and parameter-dependent coefficients.

Using the regular perturbation method, we apply the blow-up transformation:

x = εp
a

u, y= ε2
p

a
v,

µ1 =−σε2, µ2 = b
a
ε2 θ (2.3)

and consider ε≥ 0 and s = εt the new time. Thus, system (2.2) becomes:
du
ds

= v,

dv
ds

=σ(−u+u3)+ b
a
εv(θ−u2)+ ε2

a2 u3(−σa10a+a01bθ+ cu2)+ ε3

a2 u2v(σb10a−b01bθ−du2).

(2.4)
The branch of heteroclinic/homoclinic orbits of system (2.4) parametrized by ε is

u = u0 +εu1 +ε2u2 + . . .+εkuk + . . .

v = v0 +εv1 +ε2v2 + . . .+εkvk + . . .

θ = θ0 +εθ1 +ε2θ2 + . . .+εkθk + . . .

 (2.5)

where k stands for the order of approximation.
For the homoclinic orbits we require that lim

s→∞u(s) = lim
s→−∞u(s)= 0 and lim

s→∞v(s)= lim
s→−∞v(s)= 0,

and that the initial point is situated on the horizontal axis, that is v(0)= 0.
Replacing (2.5) into (2.4) and collecting the εk terms, with k = 0,1,2, we get a Hamiltonian

system and two linear non-homogenous systems, whose solutions are:

u0(s)=p
2sech(s),

v0(s)=−p2sech(s)tanh(s),

u1(s)= 2
p

2
5

b
a

ln(cosh(s))sech(s)tanh(s),

v1(s)=−
p

2
5

b
a

[1+cosh(2s)(−1+ lncosh(s))−3lncosh(s)]sech3(s)s,

u2(s)= 1

150
p

2a2
sech(s)3(cosh(2s)(75aa10 +60a01b−14b2 +200c−24b2 lncosh(s)

+12b2 ln2 cosh(s)+3(25aa10 +20a01b+6b2 +8b2 lncosh(s)

−12b2 ln2 cosh(s)+4b2ssinh(2s))),

v2(s)= u′
2(s).



(2.6)
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Thus we obtain:

Theorem 1. The second order approximation of a homoclinic orbit in the normal form (2.2) is:

x(t)= εp
a

[
u0 (εt)+εu1 (εt)+ε2u2 (εt)

]
,

y(t)= ε2
p

a
[
v0 (εt)+εv1 (εt)+ε2v2 (εt)

]
,

where u0, u1, u2 and v0, v1, v2 are given above.

In addition, integrating the system obtained by collecting the ε3 terms, the terms u3,
v3 are determined. These terms allow to compute the value θ2, and thus the second order
approximation of HL as follows:

Theorem 2. The second order approximation of the curve of homoclinic bifurcation values is

HL : µ2 = b
a
µ1

[
θ0 +θ1

p
µ1 +θ2µ1

]
,

where θ0 = 4
5 , θ1 = 0, and

θ2 = 1
13125a2b

[300a(35a10b+28bb01+40d)+8b
(
1050a01b+23b2 +1600c

)+10500a2b10].

Remark that in the particular case a10 = a01 = 0, b10 = b01 = 0, c = d = 0, a = b = 1, we find
the result from Theorem 3 in [14].

For the general case σ= 1, similar results concerning the heteroclinic orbits are given in
Theorems 2 and 3 from [15].

3. Homoclinic and Heteroclinic Orbits for a Liénard System
Consider the following generalized Liénard system [11]

ẋ1 = x2,

ẋ2 =−c1x1 +δm0x2 − c3x3
1 −δm1x2

1x2 −δm2x3
2, (3.1)

where the dot over quantities stands for differentiation with respect to the time τ. This system
is invariant with respect to the symmetry (x1, x2) −→ (−x1,−x2). As c1 = 0, and δm0 = 0, the
origin is an equilibrium point with two zero eigenvalues.

In [15], we obtained the normal form of system (3.1) into the form (2.2), with µ1 = −c1,
µ2 = δm0, and

a =−σc3, a10 = 0, a01 = 0,

b = δm1, b10 =−3δm2, b01 = 0,

c = 0, d = 3c3δm2. (3.2)

We used a time transformation and the variable transformation

x = x1,

y= (1−δ2m0m2x2
1 +δm2x1x2)x2. (3.3)
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Thus, a double-zero bifurcation with Z2-symmetry takes place. Using Theorem 2 above, and
Theorem 3 from [15], second order approximations of the curves of homoclinic and heteroclinic
bifurcation values involved by this bifurcation are obtained for the Liénard system (3.1), as
follows.

Theorem 3. As δc3m1 6= 0, a double-zero bifurcation with symmetry of order two is present at
E0 = (0,0) as c1 = 0, δm0 = 0. In addition,

(i) if δc3m1 > 0, the curve of homoclinic bifurcation values is approximated by

HL : m0 =− c1m1

c3

[
4
5
− c1

13125

(
184δ2m2

1

c2
3

+ 4500m2

m1

)]
, (3.4)

(ii) if δc3m1 < 0, the curve of heteroclinic bifurcation values is approximated by

HT : m0 =− c1m1

c3

[
1
5
+ c1

13125

(
16δ2m2

1

c2
3

+ 4500m2

m1

)]
. (3.5)

Using the local inverse transformation of (3.3), second order approximations of orbits are
obtained into the form:

x1(t)= εp
a

[
u0 (εt)+εu1 (εt)+ε2u2 (εt)

]
,

x2(t)= ε2
p

a

[
v0 (εt)+εv1 (εt)+ε2

(
v2(εt)+ δ2m0m2

a
u2

0(εt)v0(εt)
)]

. (3.6)

Obviously, when the terms containing ε2 into the right hand side brackets in (3.6) are ignored,
the first order approximations are obtained, while as terms containing ε and ε2 into the right
hand side brackets in (3.6) are ignored, then zero order approximations (i.e. Homiltonian) of the
orbits are obtained.

Replacing ui , vi , i = 0,1,2 given by (2.6), into (3.6), and using (3.2), with σ = −1, the
following result is obtained.

Theorem 4. As δc3m1 > 0, the second order approximation of a homoclinic orbit for the Liénard
system (3.1), close to the bifurcation point, is given by:

x1(s)= εsech3(s)

75
p

2c5/2
3

{75c2
3 +cosh(2s)[75c2

3 −δ2ε2m2
1(7+12lncosh(s)−6ln2 cosh(s))]

+3δ2ε2m2
1[3+4lncosh(s)−6ln2 cosh(s)]+6δεm1 sinh(2s)[δεm1s+5c3 lncosh(s)]}

x2(s)=−ε
2 sech4(s)

75
p

2c5/2
3

{3δεm1 cosh(3s)[−5c3 +δεm1s+5c3 lncosh(s)]

−15δεm1 cosh(s)[−c3 +δεm1s+5c3 lncosh(s)]

+sinh(s)[75c2
3 +δ2ε2(23m2

1 +300c3m0m2 +96m2
1 lncosh(s)

−66m2
1 ln2 cosh(s))+cosh(2s)[75c2

3 −δ2ε2m2
1(1+24lncosh(s)−6ln2 cosh(s))]},

where ε=p−c1 and m0 is given by (3.4).

Replacing ui , vi , i = 0,1,2 given by (9), (11), (12) from [15], into (3.6), and using (3.2), with
σ= 1, the following result is obtained.
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Theorem 5. As δc3m1 < 0, the second order approximation of a heteroclinic orbit for the Liénard
system (3.1), close to the bifurcation point, is given by:

x1(s)= εp−c3
tanh

sp
2
−
ε2δm1 sech2 sp

2

150c2
3
p−c3

[
3
p

2
(
δεm1s+10c3 lncosh

sp
2

)
+4δεm1 tanh

sp
2

(
−2−3lncosh

sp
2
+3ln2 cosh

sp
2

)]
,

x2(s)=
ε2 sech4 sp

2

300(−c3)5/2

{
75

p
2c3(c3 +δ2ε2m0m2)+

p
2δ2ε2m2

1

(
7+36lncosh

sp
2
−24ln2 cosh

sp
2

)
+
p

2cosh(s
p

2)
[
75c3(c3 −δ2ε2m0m2)−δ2ε2m2

1

(
5+24lncosh

sp
2
−12ln2 cosh

sp
2

)]
+ 6δεm1 sinh(s

p
2)

[
−5c3 +δεm1s+10c3 lncosh

sp
2

]}
with ε=p

c1 and m0 given by (3.5).

Figure 2. Homoclinic orbits for Liénard system (3.1). Parameters c1 =−1.5, c3 = 2, m1 = 1, m2 = 0, and
δ= 1.5: (i) numerical approximation (to the left); (ii) Hamiltonian (in black), first (red, dotted) and second
order (blue) approximations (to the right).

As an example, consider c1 = −1.5, c3 = 2, m1 = 1, m2 = 0, and δ = 1.5. Using the first
order approximation of the curve of homoclinic bifurcation values, we obtain m0 = 0.6, while
using the second order approximation (3.4) we obtain m0 = 0.6088. This last value is a better
approximation of the numerically value m0 = 0.60875 (obtained using XPPAUT [7]), than
the first order one. The homoclinic orbits in this case are plotted in Figure 2, using [16].
A neighbourhood of origin in Figure 2(ii) is represented in Figure 3. Remark that the curve of
first order approximation of the homoclinic orbit makes a parasitic turn before approaching the
saddle equilibrium in origin as the time tends to −∞. This phenomenon does not happen for
the curve of second order approximation of this homoclinic.
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Figure 3. Detail in Figure 2(ii).

4. Conclusions
In our study, we found the second order approximations of homoclinics involved in the normal
form of a degenerated Bogdanov-Takens bifurcation, truncated up to five order terms and with
parameter dependent coefficients. They are given in Theorem 1. In addition, the second order
approximation of the curve of homoclinic bifurcation values was obtained in Theorem 2. These
formulae and some similar ones from a previous paper concerning the heteroclinic orbits, were
applied for a Liénard system in Section 3. Remark that the second order approximation for
the value corresponding to the homoclinic bifurcation given by (3.4) or corresponding to the
heteroclinic bifurcation given by (3.5), is good also far away from the bifurcation point, even
though the second order approximation of the homoclinic/heteroclinic orbit fails to be in good
agreement with the numerical one.

Acknowledgement
This research was partially supported by Horizon2020-2017-RISE-777911 project.

Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
All the authors contributed significantly in writing this article. The authors read and approved
the final manuscript.

References
[1] B. Al-Hdaibat, W. Govaerts, Y.A. Kuznetsov and H.G.E. Meijer, Initialization of Homoclinic solutions

near Bogdanov–Takens Points: Lindstedt–Poincaré compared with regular perturbation method,
SIAM J. Appl. Dynam. Sys. 15 (2016), 952, DOI: 10.1137/15M1017491.

Journal of Informatics and Mathematical Sciences, Vol. 10, No. 4, pp. 563–571, 2018

http://doi.org/10.1137/15M1017491


Homoclinic and Heteroclinic Orbits for a Liénard System: C. Rocşoreanu and M. Sterpu 571
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