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Green’s Condition and Green-Kehayopulu Relations

on le-Ternary Semigroups

Aiyared Iampan

Abstract. We introduce the concept of the Green-Kehayopulu relations in le-
ternary semigroups mimics the definition of the Green-Kehayopulu relations in
le-semigroups that was introduced in 2002 by Petro and Pasku [5] and investigate
the Green-Kehayopulu relations in le-ternary semigroups.

1. Introduction

The literature of ternary algebraic system was introduced by Lehmer [4] in
1932. He investigated certain ternary algebraic systems called triplexes which
turn out to be ternary groups. The notion of ternary semigroups was known to
S. Banach. He showed by an example that a ternary semigroup does not necessarily
reduce to an ordinary semigroup. We can see that any semigroup can be reduced
to a ternary semigroup. In 2002, Petraq Petro and Elton Pasku [5] introduced the
concept of the Green-Kehayopulu relations in le-semigroups and showed that a
nonsingleton H -class cannot be a subgroup and an H -class satisfying “Green’s
condition” need not constitute a subsemigroup.

The main purpose of this paper is to introduce the concept of the Green-
Kehayopulu relations in le-ternary semigroups and give necessary and sufficient
conditions in order that an Ht -class of le-ternary semigroup T is a subgroup or a
subsemigroup of 〈Tt ,◦〉.

2. Basic Definitions

We first recall the definition of a ternary semigroup which is important here.

A nonempty set T is called a ternary semigroup [4] if there exists a ternary
operation [ ]: T × T × T → T, written as (x1, x2, x3) 7→ [x1 x2 x3], satisfying the
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following identity for any x1, x2, x3, x4, x5 ∈ T ,

[[x1 x2 x3]x4 x5] = [x1[x2 x3 x4]x5] = [x1 x2[x3 x4 x5]].

A nonempty subset S of a ternary semigroup T is called a ternary subsemigroup [1]
of T if [SSS]⊆ S.

For any positive integers m and n with m ≤ n and any elements x1, x2, . . . , x2n

and x2n+1 of a ternary semigroup T [6], we can write

[x1 x2 . . . x2n+1] = [x1 . . . xm xm+1 xm+2 . . . x2n+1]

= [x1 . . . [[xm xm+1 xm+2]xm+3 xm+4] . . . x2n+1].

Example 1 ([1]). Let T = {−i, 0, i}. Then T is a ternary semigroup under the
multiplication over complex number while T is not a semigroup under complex
number multiplication.

Example 2 ([1]). Let O =
� 0 0

0 0

�
, I =

� 1 0
0 1

�
, A1 =

� 1 0
0 0

�
, A2 =

� 0 1
0 0

�
, A3 =

� 0 0
1 0

�

and A4 =
� 0 0

0 1

�
. Then T = {O, I , A1, A2, A3, A4} is a ternary semigroup under matrix

multiplication.

For any t ∈ T , an element x of a ternary semigroup T is said to be a t-idempotent
if [x t x] = x . For a ternary semigroup T and any t ∈ T , if we define a ◦ b = [at b]
for all a, b ∈ T , then T becomes a semigroup. We denote this semigroup by Tt .

A ternary semigroup T is called an le-ternary semigroup if 〈T ;∨,∧〉 is a lattice
with a greatest element (the element is always denoted by e below) [3] and for
any a, b, x , y ∈ T ,

[x y(a ∨ b)] = [x ya]∨ [x y b] and [(a ∨ b)x y] = [ax y]∨ [bx y].

Throughout this paper T will stand for an le-ternary semigroup. We shall
consider the usual order relation ≤ on T defined by for any a, b ∈ T , a ≤ b if
and only if a ∨ b = b. Then we can show that for any a, b, x , y ∈ T , a ≤ b implies
[ax y]≤ [bx y], [xa y]≤ [x b y] and [x ya]≤ [x y b]. Hence we have known that
ordered ternary semigroups are a generalization of le-ternary semigroups. For any
t ∈ T , let the mappings lt , rt : T → T be defined by for any x ∈ T ,

lt(x) = [et x]∨ x and rt(x) = [x te]∨ x .

Then we define equivalence relations on T as follows:

Lt := {(x , y) | lt(x) = lt(y)},
Rt := {(x , y) | rt(x) = rt(y)},
Ht :=Lt ∩Rt .

We shall call the equivalences Lt ,Rt andHt the Green-Kehayopulu relations of T .
An element x of T is said to be a t-left ideal (t-right ideal) element if lt(x) = x
(rt(x) = x) and a t-ideal element if it is both a t-left ideal element and a t-right
ideal element; it is called a t-quasi-ideal element if [et x]∧[x te]≤ x . An element x
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of T is said to be a t-regular element if x ≤ [x[tet]x] and a t-intra-regular element
if x ≤ [[et x]t[x te]]. AnHt -class H of T satisfying Green’s condition if there exist
elements a and b of T such that [at b] ∈ H.

3. Lemmas

Before the characterizations of the Ht -class of T for the main results, we give
auxiliary results which are necessary in what follows.

Lemma 3.1. For each x , t ∈ T,

lt(lt(x)) = lt(x) and rt(rt(x)) = rt(x).

Proof. From the definition of the mapping lt it follows that lt(lt(x)) = lt([et x]∨
x) = [et([et x] ∨ x)] ∨ [et x] ∨ x = [et[et x]] ∨ [et x] ∨ [et x] ∨ x = [et[et x]] ∨
[et x] ∨ x . Since e is the greatest element in T , we also have [ete] ≤ e. Thus
[et[et x]] = [[ete]t x] ≤ [et x], so [et[et x]] ∨ [et x] = [et x]. Hence lt(lt(x)) =
[et x]∨ x = lt(x). By symmetry, rt(rt(x)) = rt(x). ¤

Lemma 3.2. If an element a of T is a t-left ideal element and an element b of T is a
t-right ideal element, then a ∧ b is a t-quasi-ideal element.

Proof. Assume that a is a t-left ideal element and b is a t-right ideal element of T .
Then [eta]∨ a = lt(a) = a and [bte]∨ b = rt(b) = b, so [eta]≤ a and [bte]≤ b.
Hence [et(a ∧ b)] ∧ [(a ∧ b)te] ≤ [eta] ∧ [bte] ≤ a ∧ b. Therefore a ∧ b is a
t-quasi-ideal element. ¤

Lemma 3.3. For each x , t1, t2 ∈ T,

lt2
(lt2
(x)∧ rt1

(x)) = lt2
(x) and rt1

(lt2
(x)∧ rt1

(x)) = rt1
(x).

Proof. Since x = x ∧ x ≤ lt2
(x)∧ rt1

(x) ≤ lt2
(x), it follows from Lemma 3.1 that

lt2
(x)≤ lt2

(lt2
(x)∧ rt1

(x))≤ lt2
(lt2
(x)) = lt2

(x). Hence lt2
(lt2
(x)∧ rt1

(x)) = lt2
(x).

By symmetry, rt1
(lt2
(x)∧ rt1

(x)) = rt1
(x). ¤

Lemma 3.4. Each Ht -class H of T has a greatest element which is equal to
lt(a)∧ rt(a) where a is an arbitrary element in H.

Proof. Let a be an element of the Ht -class H of T . By Lemma 3.3, we have
(lt(a)∧ rt(a), a) ∈ Lt and (lt(a)∧ rt(a), a) ∈ Rt . Thus (lt(a)∧ rt(a), a) ∈ Ht , so
lt(a)∧ rt(a) ∈ H. Now let any x ∈ H. Then (x , a) ∈Ht =Lt ∩Rt , this implies that
x ≤ lt(x) = lt(a) and x ≤ rt(x) = rt(a). Hence x ≤ lt(a)∧ rt(a), so lt(a)∧ rt(a) is
a greatest element of H. ¤

Lemmas 3.1 and 3.2 imply that for each element a of T , the meet lt(a)∧ rt(a)
is a t-quasi-ideal element. Lemma 3.4 implies that for each element a of the Ht -
class H, lt(a) ∧ rt(a) is a greatest element of H. We call the element lt(a) ∧ rt(a)
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the representative t-quasi-ideal element of the Ht -class of a; the representative t-
quasi-ideal element of anHt -class H will be denoted by qH . From Lemma 3.4, the
following properties of qH hold.

(1) qH ∈ H.
(2) For each x ∈ H, lt(x)∧ rt(x) = qH ; in particular, lt(qH)∧ rt(qH) = qH .
(3) For each x ∈ H, x ≤ qH .

Lemma 3.5. If elements x and y of T are Rt -related (resp. Lt -related), then
[x te] = [y te] (resp. [et x] = [et y]).

Proof. Assume that (x , y) ∈Rt . Then rt(x) = rt(y), so [x te]∨x = [y te]∨ y . This
implies that [[x te]te]∨ [x te] = [([x te]∨ x)te] = [([y te]∨ y)te] = [[y te]te]∨
[y te]. Since [ete] ≤ e, [[x te]te] = [x t[ete]] ≤ [x te] and [[y te]te] =
[y t[ete]]≤ [y te]. Hence [x te] = [[x te]te]∨[x te] = [[y te]te]∨[y te] = [y te].
Similarly, (x , y) ∈ Lt implies [et x] = [et y]. ¤

Lemma 3.6. If H is an Ht -class of T and x ∈ H, then [et x] ∧ [x te] = [etqH] ∧
[qH te].

Proof. Assume that H is an Ht -class of T and x ∈ H. Then (x , qH) ∈ Ht .
It follows from Lemma 3.5 that [et x] = [etqH] and [x te] = [qH te]. Hence
[et x]∧ [x te] = [etqH]∧ [qH te]. ¤

4. Main Results

In this section, we characterize the relationship between the Ht -classes of T
satisfying Green’s condition and the semigroup 〈Tt ,◦〉 and give some conditions
which ensure that an Ht -class of T forms a subgroup or a subsemigroup of the
semigroup 〈Tt ,◦〉.

The following theorems collect several properties that hold in everyHt -class of
T satisfying Green’s condition.

Theorem 4.1. Let H be an Ht -class of T satisfying Green’s condition and q = qH .
Then we have the following statements:

(a) [qtq] ∈ H and q = [etq]∧ [qte].
(b) The element q is the only t-quasi-ideal element in H.
(c) If x , y ∈ H, then y ≤ [et x] and y ≤ [x te].
(d) For each integer n ≥ 2, let t1, t2, . . . , tn−1 ∈ {t}. Then [qtq] = [[qte]tq] =
[[[[qt1q]t2q] . . . q]tn−1q]; in particular, [qtq] is a t-idempotent.

(e) Every element of H is a t-intra-regular element.
(f) The element q is a t-idempotent if and only if q is a t-regular element in which

case every element of H is a t-regular element.

Proof. (a) Since H satisfies Green’s condition, there exist b, c ∈ H such that
[btc] ∈ H. Since b, c ∈ H, we have b ≤ q and c ≤ q. Thus [btc] ≤ [qtq] ≤
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[qte], this implies that rt([btc]) ≤ rt([qtq]) ≤ rt([qte]). Since ([btc], q) ∈ Ht ,
([btc], q) ∈ Rt . Thus rt([btc]) = rt(q). On the other hand, since [ete] ≤ e, we
have rt([qte]) = [[qte]te] ∨ [qte] = [qt[ete]] ∨ [qte] = [qte] ≤ [qte] ∨ q =
rt(q). Hence rt(q) = rt([btc]) ≤ rt([qtq]) ≤ rt([qte]) = [qte] ≤ rt(q), so
rt(q) = rt([qtq]) = [qte]. By symmetry, lt(q) = lt([qtq]) = [etq]. Therefore
(q, [qtq]) ∈Ht , so [qtq] ∈ H. It follows that q = lt(q)∧ rt(q) = [etq]∧ [qte].

(b) By (a), q is a t-quasi-ideal element in H. Now let t be any t-quasi-ideal element
in H. By (a) and Lemma 3.6, we have t ≤ q = [etq] ∧ [qte] = [et t] ∧ [t te] ≤ t.
Hence t = q, so we conclude that q is the only t-quasi-ideal element in H.

(c) Let any x , y ∈ H. By (a) and Lemma 3.6, we have y ≤ q = [etq] ∧ [qte] =
[et x]∧ [x te]. Hence y ≤ [et x] and y ≤ [x te].

(d) By (a), q = [etq] ∧ [qte] ≤ [qte]. Thus [qtq] ≤ [[qte]tq]. Since [etq] ≤ e,
[[qte]tq] = [qt[etq]] ≤ [qte]. Similarly, since [qte] ≤ e, [[qte]tq] ≤ [etq].
Thus [[qte]tq] ≤ [etq] ∧ [qte] = q. Hence [[[qtq]te]tq] = [[qt[qte]]tq] ≤
[qtq]. By (a), we get ([qtq], q) ∈ Rt . By Lemma 3.5, [qte] = [[qtq]te]
and it follows that [[qte]tq] = [[[qtq]te]tq]. Hence [qtq] ≤ [[qte]tq] and
[[qte]tq] ≤ [qtq], so [qtq] = [[qte]tq]. Now let any integer k ≥ 2 and
t1, t2, . . . , tk−1 ∈ {t} be such that [[[[qt1q]t2q] . . . q]tk−1q] = [qtq]. Then
[[[[[qt1q]t2q] . . . q]tk−1q]tq] = [[qtq]tq] = [qt[qtq]] = [qt[[qte]tq]] =
[[[qtq]te]tq] = [[qte]tq] = [qtq]. In particular, [[qtq]t[qtq]] = [qtq]. Hence
[qtq] is a t-idempotent.

(e) Let any x ∈ H. Then x ≤ q. By (a), we get q ≤ [etq] and q ≤ [qte]. Thus
x ≤ [etq]≤ [et[qte]] = [[etq]te]. By (a), we get ([qtq], q) ∈Rt . By Lemma 3.5,
[qte] = [[qtq]te]. This implies that x ≤ [[etq]te] = [et[qte]] = [et[[qtq]te]] =
[[etq]t[qte]]. Since (x , q) ∈ Ht , it follows from Lemma 3.5 that [etq] = [et x]
and [qte] = [x te]. Hence x ≤ [[et x]t[x te]], so we conclude that x is a t-intra-
regular element.

(f) Assume that q = [qtq]. By (d), [qtq] = [[qte]tq]. Thus q = [[qte]tq] =
[q[tet]q], so q is a t-regular element. If x ∈ H, then x ≤ q. Since (x , q) ∈ Ht ,
it follows from Lemma 3.5 that [etq] = [et x] and [qte] = [x te]. Hence x ≤
q = [[qte]tq] = [[x te]tq] = [x t[etq]] = [x[tet]x]. Therefore x is a t-regular
element.

Conversely, assume that q ≤ [q[tet]q]. By (d), [qtq] = [q[tet]q]. Thus
q ≤ [qtq]. By (a), [qtq] ∈ H. Thus [qtq] ≤ q. Hence q = [qtq], so we conclude
that q is a t-idempotent.

Therefore we complete the proof of the theorem. ¤

Using the Theorem 4.1(a) and (d), we have Corollary 4.2.

Corollary 4.2. AnHt -class H of T satisfies Green’s condition if and only if it contains
a t-idempotent.
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Theorem 4.3. AnHt -class H of T is a subgroup of 〈Tt ,◦〉 if and only if it consists of
a single idempotent.

Proof. Assume that H is a subgroup of Tt and let q = qH . Then [qtq] = q ◦ q ∈ H,
so [qtq]≤ q. Denote by i the identity element of H. Then i ≤ q, so q ◦q = [qtq]≤
q = q ◦ i = [qti] ≤ [qtq] = q ◦ q. Hence q ◦ q = q, so we conclude that q = i. Now
let t be an arbitrary element of H. We denote by t−1 the inverse element of t in
H. Then t−1 ≤ q, so q = i = t ◦ t−1 = [t t t−1] ≤ [t tq] = t ◦ q = t ◦ i = t. On
the other hand, t ≤ q. Therefore t = q, so we conclude that H consists of a single
idempotent.

The converse is obvious. ¤

Theorem 4.4. Let H be anHt -class of M and q = qH . Then the following statements
are equivalent:

(a) AnHt -class H is a subsemigroup of 〈Tt ,◦〉.
(b) If x ∈ H, then [x t x] ∈ H.
(c) AnHt -class H satisfies Green’s condition and [x tq] = [qtq] = [qt x] for every

x ∈ H.

Proof. Since H is a subsemigroup of Tt , we immediately have [x t x] = x ◦ x ∈ H
for all x ∈ H. Therefore (a) implies (b). Let any x ∈ H. Then [x t x] ∈ H, so H
satisfies Green’s condition and (x , [x t x]) ∈Ht . By Lemma 3.5, [et x] = [et[x t x]]
and [x te] = [[x t x]te]. Similarly, since (x , q) ∈ Ht , we get [et x] = [etq]
and [x te] = [qte]. By Theorem 4.1(d), [qtq] = [[qte]tq]. Hence [x t[qtq]] =
[x t[[qte]tq] = [x t[[x te]tq] = [[[x t x]te]tq] = [[x te]tq] = [[qte]tq] = [qtq].
Similarly, [[qtq]t x] = [qtq]. Since x , [qtq] ∈ H, we have x ≤ q and [qtq] ≤ q.
Hence [qtq] = [x t[qtq]] ≤ [x tq] ≤ [qtq], so we conclude that [x tq] = [qtq].
Similarly, [qt x] = [qtq]. Thus (b) implies (c). Let any x , y ∈ H. Then (y, q) ∈Ht ,
so (y, q) ∈ Rt . Thus rt(y) = rt(q), so [y te] ∨ y = [qte] ∨ q. Hence rt([x t y]) =
[[x t y]te] ∨ [x t y] = [x t[y te]] ∨ [x t y] = [x t([y te] ∨ y)] = [x t([qte] ∨ q)] =
[x t[qte]]∨ [x tq] = [[x tq]te]∨ [x tq] = rt([x tq]). Since x ∈ H, [x tq] = [qtq].
This implies that rt([x t y]) = rt([qtq]). By Theorem 4.1(a), [qtq] ∈ H. It follows
that rt([qtq]) = rt(q). Hence rt([x t y]) = rt(q), so ([x t y], q) ∈ Rt . Similarly,
since (y, q) ∈ Lt , we have ([x t y], q) ∈ Lt . We conclude that ([x t y], q) ∈ Ht ,
so x ◦ y = [x t y] ∈ H. Therefore H is a subsemigroup of Tt , so we have that (c)
implies (a).

Hence the theorem is now completed. ¤

As a consequence of Theorem 4.4, we immediately have Corollary 4.5.

Corollary 4.5. If H is an Ht -class of T and [qH t x] = qH = [x tqH] for all x ∈ H,
then H is a subsemigroup of 〈Tt ,◦〉.
Lemma 4.6. If H is an Ht -class of T satisfying Green’s condition and q = qH is a
t-ideal element, then [qt x] = q = [x tq] for all x ∈ H.
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Proof. Assume that H is an Ht -class of T satisfying Green’s condition and q = qH

is a t-ideal element. Then lt(q) = q and rt(q) = q, so [etq] ≤ q and [qte] ≤ q. By
Theorem 4.1(c), we have q ≤ [etq] and q ≤ [qte]. This implies that [etq] = q =
[qte]. By Theorem 4.1(a), [qtq] ∈ H. Thus (q, [qtq]) ∈ Lt , it follows from Lemma
3.5 that [etq] = [et[qtq]]. Therefore [[qte]tq] = [[etq]tq] = [et[qtq]] =
[etq] = q. Now let x be an arbitrary element of H. By Lemma 3.5, we have
[et x] = [etq] and [x te] = [qte]. Hence [x tq] = [x t[etq]] = [[x te]tq] =
[[qte]tq] = q and [qt x] = [[qte]t x] = [qt[et x]] = [qt[etq]] = q. Therefore
[qt x] = q = [x tq] for all x ∈ H.

Hence the proof of the lemma is completed. ¤

Immediately from Corollary 4.5 and Lemma 4.6, we have Corollary 4.7.

Corollary 4.7. If H is an Ht -class of T satisfying Green’s condition and qH is a
t-ideal element, then H is a subsemigroup of 〈Tt ,◦〉.

Corollary 4.8. An Ht -class H of the greatest element e of T is a subsemigroup of
〈Tt ,◦〉 if and only if e is a t-idempotent.

Proof. Assume that anHt -class H of the greatest element e of T is a subsemigroup
of Tt . Then [ete] = e ◦ e ∈ H, so H satisfies Green’s condition. Since e ∈ H, e ≤ qH .
Thus qH = e. Since e ≤ [ete] ∨ e = lt(e) = rt(e) ≤ e, we have lt(e) = e = rt(e).
Hence e is a t-ideal element. By Lemma 4.6, [et x] = e = [x te] for all x ∈ H.
Hence e = [ete], so e is a t-idempotent.

Conversely, assume that e is a t-idempotent in anHt -class H. Then [ete] = e ∈
H, so H satisfies Green’s condition. By the above proof, qH = e and e is a t-ideal
element. It follows from Corollary 4.7 that H is a subsemigroup of Tt .

Hence the proof is completed. ¤

Theorem 4.9. Let H be an Ht -class of T such that its representative t-quasi-ideal
element q = qH is minimal in the set of all t-quasi-ideal elements of T . Then
H = {x ∈ T | x ≤ q} is a subsemigroup of 〈Tt ,◦〉.

Proof. If x ∈ H, then x ≤ q. Now assume that x is an element of T such that x ≤ q.
Then lt(x) ∧ rt(x) ≤ lt(q) ∧ rt(q) = q. By Lemmas 3.1 and 3.2, lt(x) ∧ rt(x) is a
t-quasi-ideal element. Since q is a minimal t-quasi-ideal element, lt(x)∧rt(x) = q.
Thus q ≤ lt(x) and q ≤ rt(x). By Lemma 3.1, we have lt(q)≤ lt(lt(x)) = lt(x) and
rt(q) ≤ rt(rt(x)) = rt(x). Since x ≤ q, we have lt(x) ≤ lt(q) and rt(x) ≤ rt(q).
Hence lt(x) = lt(q) and rt(x) = rt(q), so (x , q) ∈ Lt ∩Rt =Ht . Therefore x ∈ H,
so we conclude that H = {x ∈ T | x ≤ q}. Now let x be an arbitrary element of H.
Then x ≤ q. Since x ≤ e, we have [x t x] ≤ [etq]∧ [qte] ≤ lt(q)∧ rt(q) = q. This
implies that [x t x] ∈ H. It follows from Theorem 4.4 that H is a subsemigroup of
Tt .

Therefore the proof of the theorem is completed. ¤
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