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Mixed Type Second-Order Duality for
Variational Problems

I. Husain and Bilal Ahmad

Abstract. A mixed type second-order dual to a variational problem is formulated
as a unification of Wolfe and Mond-Weir type dual problems already treated in
the literature and various duality results are validated under generalized second
order invexity. Problems with natural boundary values are formulated and it also
is pointed out that our duality results can be regarded as dynamic generalizations
of those of (static) nonlinear programming.

1. Introduction

Duality in continuous programming problem has been investigated by many
authors. Hanson [4] pointed out that some of the duality results in nonlinear
programming have the analogues in calculus of variations. Exploring this
relationship of mathematical programming and classical calculus of variation,
Mond and Hanson [8] formulated a constrained variational problem in abstract
space and using Valentine [9] optimality conditions for the same, constructed
its Wolfe type dual variational problem for proving duality results under usual
convexity conditions. Later Bector, Chandra and Husain [1] studied Mond-Weir
type duality for the problem of Mond and Hanson [8] for relaxing its convexity
requirement for duality to hold.

In view of Mond’s [7] remarks that the second-order dual for a nonlinear
programming problem gives a tighter bound and has computational advantage
over a first order dual, it is natural to find its analogue in continuous programming.
Motivated with this observation, Chen [3] formulated Wolfe type second order
dual problem to the classical variational problem and studied usual duality results
under invexity-like conditions on the function that appear in the formulation of
the problem along with some strange and hard relations. Recently Husain et
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al. [5] presented Mond-Weir type second-order dual to the variational problems
considered in [3] and establish various duality theorems under second-order
generalized invexity conditions. In [5], the relationship between second-order
duality results in calculus of variation and their counterparts in nonlinear
programming is also pointed out.

The concept of mixed type duality seems to be interesting and useful both
from theoretical and algorithmic point of view. In this research, in sprit of Xu
[10], a mixed second-order dual to the variational problem [3] to combine Wolfe
type dual and Mond-Weir type dual problems is presented. A pair of mixed type
dual variational problem with natural boundary values is formulated and the
validation of its duality results in indicated. The formulation of natural boundary
value problems is essential for seeing our results as having anologues in nonlinear
programming and hence it is pointed out that our duality results can be viewed
as dynamic generalizations of nonlinear programming already existing in the
literature.

2. Definitions and Related Pre-requistes

Let I = [a, b] be a real interval, f : I ×Rn×Rn→ R and g : I ×Rn×Rn→ Rm be
twice continuously differentiable functions. In order to consider f (t, x(t), ẋ(t))
where x : I → Rn is differentiable with derivative ẋ , denoted by fx and f ẋ , the
partial derivative of f with respect to x(t) and ẋ(t), respectively, that is,

fx =




∂ f

∂ x1

∂ f

∂ x2

...

∂ f

∂ xn




, f ẋ =




∂ f

∂ ẋ1

∂ f

∂ ẋ2

...

∂ f

∂ ẋn




;

Denote by fx x the Hessian matrix of f with respect to x , that is,

fx x =




∂ 2 f

∂ x1∂ x1

∂ 2 f

∂ x1∂ x2 · · · ∂ 2 f

∂ x1∂ xn

∂ 2 f

∂ x2∂ x1

∂ 2 f

∂ x2∂ x2 · · · ∂ 2 f

∂ x2∂ xn

...
...

...

∂ 2 f

∂ xn∂ x1

∂ 2 f

∂ xn∂ x2 · · · ∂ 2 f

∂ xn∂ xn




n×n
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It is obvious that fx x is a symmetric n×n matrix. Denote by gx the m×n Jacobian
matrix with respect to x , that is,

gx =




∂ g1

∂ x1

∂ g1

∂ x2 · · · ∂ g1

∂ xn

∂ g2

∂ x1

∂ g2

∂ x2 · · · ∂ g2

∂ xn

...
...

...

∂ gm

∂ x1

∂ gm

∂ x2 · · · ∂ gm

∂ xn




m×n

.

Similarly f ẋ , f ẋ x , fx ẋ and g ẋ can be defined.

Denote by X the space of piecewise smooth functions x : I → Rn, with the norm
‖x‖= ‖x‖∞ + ‖Dx‖∞, where the differentiation operator D is given by

u= Dx ⇐⇒ x(t) = α+

∫ t

a

u(s)ds,

where α is given boundary value; thus d
dt
= D except at discontinuities.

We incorporate the following definitions which are needed for duality results to
hold.

Definition 2.1 (Second-order Invexity). If there exists a vector function η(t, x , x̄) ∈
Rn where η : I × Rn × Rn → Rn with η = 0 at t = a and t = b, such that for the
functional

∫
I
φ(t, x , ẋ)dt where φ : I × Rn × Rn→ R satisfies

∫

I

φ(t, x , ẋ)dt−
∫

I

�
φ(t, x̄ , ˙̄x)− 1

2
pT (t)Gp(t)

�
dt

≥
∫

I

{ηTφx(t, x̄ , ˙̄x) + (Dη)Tφ ẋ(t, x̄ , ˙̄x) +ηT Gp(t)}dt

where G = φx x − Dφx ẋ + D2φ ẋ ẋ and p ∈ C(I , Rn), the space of continuous n-
dimensional continuous vector functions.

Definition 2.2 (Second-order Pseudoinvexity). If the functional
∫

I
φ(t, x , ẋ)dt

satisfies∫

I

{ηTφx + (Dη)
Tφ ẋ +η

T Gp(t)}dt≥ 0

⇒
∫

I

φ(t, x , ẋ)dt≥
∫

I

�
φ(t, x̄ , ˙̄x)− 1

2
p(t)T Gp(t)

�
dt,

then
∫

I
φ(t, x , ẋ)dt is said to be second-order pseudoinvex with respect to η.
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Definition 2.3 (Strictly Second-order Pseudoinvexity). If the functional
∫

I
φ(t, x , ẋ)dt

satisfies∫

I

{ηTφx + (Dη)
Tφ ẋ +η

T Gp(t)}dt≥ 0

⇒
∫

I

φ(t, x , ẋ)dt>

∫

I

�
φ(t, x̄ , ˙̄x)− 1

2
p(t)T Gp(t)

�
dt,

then
∫

I
φ(t, x , ẋ)dt is said to be Strictly second-order pseudoinvex with respect

to η.

Definition 2.4 (Second order Quasi-invex). If the functional
∫

I
φ(t, x , ẋ)dt satisfies

∫

I

φ(t, x , ẋ)dt≤
∫

I

�
φ(t, x̄ , ˙̄x)− 1

2
p(t)T (t)Gp(t)

�
dt

⇒
∫

I

{ηTφx + (Dη)
Tφ ẋ +η

T Gp(t)}dt≤ 0,

then
∫

I
φ(t, x , ẋ)dt is said to be second-order quasi-invex with respect to η.

If φ is independent of t, then the above definitions reduce to those given in [11].

Consider the following constrained variational problem:

(VP) Minimize

∫

I

f (t, x , ẋ)dt

subject to x(a) = 0= x(b), (1)

g(t, x , ẋ)≤ 0, t ∈ I (2)

where f : I×Rn×Rn→ R and g : I×Rn×Rn→ Rm are continuously differentiable.

The Fritz-John optimality conditions for the problem (VP) derived in [2] are
given in the proposition below.

Proposition 2.1 (Fritz-John Conditions). If (VP) attains a local (or) global
minimum at x = x̄ ∈ X , then there exist Lagrange multipliers τ ∈ R and piecewise
smooth y : I → Rm such that

τ fx(t, x̄ , ˙̄x) + y(t)T gx(t, x̄ , ˙̄x)− D[ f ẋ(t, x̄ , ˙̄x) + y(t)T g ẋ(t, x̄ , ˙̄x)] = 0, t ∈ I ,

y(t)T g(t, x̄ , ˙̄x) = 0, t ∈ I

(τ, y(t))≥ 0, t ∈ I

(τ, y(t)) 6= 0, t ∈ I

The Fritz John necessary conditions for (VP), become the Karush-Kuhn-Tucker
conditions if τ= 1. If τ= 1, the solution x̄ is said to be normal.
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Chen [3] presented the following Wolfe type dual to (VP) in the spirit of
Mangasarian [6] and proved various duality results under somewhat strange
invexity-like condition.

(WVD) Maximize

∫

I

�
f (t, u, u̇) +α(t)T g(t, u, u̇)− 1

2
p(t)T H(t, u, u̇,α(t))p(t)

�
dt

subject to

u(a) = 0= u(b),

fu(t, u, u̇) +α(t)T gu(t, u, u̇)− D[ fu̇(t, u, u̇) +α(t)T gu̇(t, u, u̇)]

+H(t)p(t) = 0, t ∈ I ,

α(t) ∈ Rm
+, p(t) ∈ Rn

where

H = fuu(t, u(t), u̇(t)) + (y(t)T gu(t, u(t), u̇(t)))u

− 2D( fuu̇(t, u(t), u̇(t)) + (y(t)T gu(t, u(t), u̇(t)))u̇)

+ D2( fu̇u̇(t, u(t), u̇(t)) + (y(t)T gu̇(t, u(t), u̇(t)))u̇).

It is remarked here that f and g are independent of t then (WVD) becomes second-
order dual problem studied by Mond [7]. Recently Husain et al. [5] presented
the following Mond-Weir dual with the view to weaken the second order invexity
requirements and proved duality theorems connecting the problems (CP) and (CD)
under generalized second order invexity hypothesis.

(CD) Maximize

∫

I

�
f (t, u, u̇)− 1

2
p(t)T F(t)p(t)

�
dt

subject to

u(a) = 0= u(b),

fu + y(t)T gu − D( fu̇ + y(t)T gu̇) + (F(t) + G(t))p(t) = 0, t ∈ I ,
∫

I

�
y(t)T g(t, u, u̇)− 1

2
p(t)T G(t)p(t)

�
dt≥ 0,

y(t)≥ 0.

where F(t) = fuu − D fuu̇ + D2 fu̇u̇ and G(t) = (y(t)T gu)u + D(y(t)T gu)u̇ +
D2(y(t)T gu̇)u̇ where D is defined as earlier.

3. Mixed Type Second Order Duality

In this section we construct a mixed type second-order dual model for the
variational problem (VP):
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(MixVD) Maximize

∫

I

�
f (t, u, u̇)+

∑

i∈I

y i(t)g i(t, u, u̇)− 1

2
p(t)T H0(t, u, u̇, y)p(t)

�
dt

subject to u(a) = 0= u(b), (3)

fu(t, u, u̇) + y(t)T gu(t, u, u̇)− D[ fu̇(t, u, u̇) + y(t)T gu̇(t, u, u̇)]

+ H(t)p(t) = 0, t ∈ I , (4)
∫

I

�∑

i∈Iα

y i(t)g i(t, u, u̇)− 1

2
p(t)T G(α, t)p(t)

�
dt≥ 0,

α= 1, 2, . . . , r (5)

y(t)≥ 0, t ∈ I , p(t) ∈ Rn (6)

where

(i) H0(t) = fuu +
∑

i∈I0

(y i(t)g i
u(t, u, u̇))u − D

�
fuu̇ +

∑

i∈I0

(y i(t)g i
u(t, u, u̇))u̇

�

+D2
�

fu̇u̇ +
∑

i∈I0

(y i(t)g i
u̇(t, u, u̇))u̇

�

(ii) G(α, t) =
∑

i∈Iα

(y i(t)g i
u(t, u, u̇))u−D

∑

i∈Iα

(y i(t)g i
u(t, u, u̇))u̇+D2

∑

i∈Iα

(y i(t)g i
u̇(t, u, u̇))u̇

and
(iii) Iα ⊂ M = {1, 2, . . . , m}, α = 0, 1, 2, . . . , r with M =

⋃
α=0

Iα and Iα ∩ Iβ = φ if

α 6= β .

We present the following duality theorems for the pair of dual problems (VP) and
(MixVD).

Theorem 3.1 (Weak Duality). Let x(t) ∈ X be a feasible solution of (VP)
and (u(t), y(t), p(t)) be a feasible solution of (MixVD). If for all feasible
(x(t), u(t), y(t), p(t)),

∫

I

�
f (t, ·, ·) +

∑

i∈I0

(y i(t)g i(t, ·, ·))
�

dt

be second-order pseudo-invex and
∑
i∈I0

∫
I
(y i(t)g i(t, ·, ·)) be second-order quasi-invex

with respect to the same η : I × Rn × Rn → Rn satisfying η = 0 at t = a and t = b,
then ∫

I

f (t, x , ẋ)dt

≥
∫

I

�
f (t, u, u̇) +

∑

i∈I0

(y i(t)g i(t, u, u̇))− 1

2
p(t)T H0(t, u, u̇, y)p(t)

�
dt.
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Proof. The relation g(t, x , ẋ)≤ 0, t ∈ I and y(t)≥ 0 yield
∫

I

�∑

i∈Iα

y i(t)g i(t, u, u̇)
�

dt≤ 0, α= 1, 2, . . . , r .

This together with (5) implies
∫

I

�∑

i∈Iα

y i(t)g i(t, x , ẋ)
�

dt

≤
∫

I

�∑

i∈Iα

y i(t)g i(t, u, u̇)− 1

2
p(t)T G(α, t)p(t)

�
dt, α= 1, 2, . . . , r

This, because of second-order quasi-invexity of
∫

I

�∑

i∈I0

y i(t)g i(t, ·, ·)
�

dt, α= 1, 2, . . . , r,

gives

0≥
∫

I

�
ηT
�∑

i∈I0

y i(t)g i
u

�
+ (Dη)T

�∑

i∈I0

y i(t)g i
u

�
+ηT G(α, t)p(t)

�
dt

=

∫

I

ηT
�∑

i∈I0

y i(t)g i
u − D

∑

i∈I0

y i(t)g i
u̇ + G(α, t)p(t)

�
dt

+η
∑

i∈I0

y i(t)g i
u̇(t, u, u̇)

����
t=b

t=a
. (by integration by part)

Using η(t, u, u̇)
��t=b
t=a = 0, we have

∫

I

ηT
�∑

i∈Iα

y i(t)g i
u(t, u, u̇)− D

∑

i∈Iα

y i(t)g i
u̇(t, u, u̇) + G(α, t)p(t)

�
dt≤ 0,

α= 1, 2, . . . , r

Hence ∫

I

ηT
� ∑

M−I0

y i(t)g i
u(t, u, u̇)− D

∑

M−I0

y i(t)g i
u̇(t, u, u̇) + G(α, t)p(t)

�
dt≤ 0

By (4), this yield
∫

I

ηT
��

fu(t, u, u̇) +
∑

i∈I0

y i(t)g i
u(t, u, u̇)

�

− D
�

fu̇(t, u, u̇) +
∑

i∈I0

y i(t)g i
u(t, u, u̇)

�
+H0(t)p(t)

�
dt≥ 0.
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Integrating by parts, this gives,

0≤
∫

I

�
ηT
�

fu(t, u, u̇) +
∑

i∈I0

y i(t)g i
u(t, u, u̇)

�

+ (Dη)T
�

fu̇(t, u, u̇) +
∑

i∈I0

y i(t)g i
u(t, u, u̇)

�
+ηT H0(t)p(t)

�
dt

−ηT
�

fu̇(t, u, u̇) +
∑

i∈I0

y i(t)g i
u(t, u, u̇)

�����
t=b

t=a

Using η= 0 at t = a and t = b in the above inequality, we obtain
∫

I

�
ηT
�

fu(t, u, u̇) +
∑

i∈I0

y i(t)g i
u(t, u, u̇)

�

+ (Dη)T
�

fu̇(t, u, u̇) +
∑

i∈I0

y i(t)g i
u(t, u, u̇)

�
+ηT H0(t)p(t)

�
dt≥ 0

This, in view of second-order invexity of
∫

I

�
f (t, ·, ·) +

∑
i∈I0

y i(t)g i(t, ·, ·)
�

dt with

respect to η gives
∫

I

�
f (t, x , ẋ) +

∑

i∈I0

y i(t)g i(t, x , ẋ)
�

dt

≥
∫

I

�
f (t, u, u̇) +

∑

i∈I0

y i(t)g i(t, u, u̇)− 1

2
p(t)T H0p(t)

�
dt

Since y(t) ≥ 0, t ∈ I and g(t, x , ẋ) ≤ 0, t ∈ I yielding
∑
i∈I0

y i(t)g i(t, x , ẋ) ≤ 0,

t ∈ I , (7) gives
∫

I

f (t, x , ẋ)dt

≥
∫

I

�
f (t, u, u̇) +

∑

i∈I0

y i(t)g i(t, u, u̇)− 1

2
p(t)T H0p(t)

�
dt. ¤

Theorem 3.2 (Strong duality). If x̄(t) ∈ X is an optimal solution of (VP) and meets
the normality condition, then there exists a piecewise smooth functions ȳ : I → Rm

such that ( x̄(t), ȳ(t), p̄(t) = 0), t ∈ I is a feasible for (Mix VD) and the two
objective values are equal. Furthermore, if the hypothesis of Theorem 1 holds, then
( x̄(t), ȳ(t), p̄(t)) is optimal for (Mix VD).

Proof. From Proposition 1 of [2], there exist piecewise smooth functions ȳ : I →
Rm satisfying the following conditions:

( fx(t, x̄ , ˙̄x) + ȳ(t)T gx(t, x̄ , ˙̄x))− D( fx(t, x̄ , ˙̄x) + ȳ(t)T gx(t, x̄ , ˙̄x)) +H(t)p̄(t) = 0,

t ∈ I with p̄(t) = 0
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ȳ(t)T g(t, x̄ , ˙̄x) = 0, ȳ(t)≥ 0, t ∈ I .

The last relation implies
∑

i∈I0

ȳ i(t)g i(t, x̄ , ˙̄x) = 0=
∑

i∈Iα

ȳ i(t)g i(t, x̄ , ˙̄x), α= 1, 2, . . . , r

∫

I

�∑

i∈Iα

ȳ i(t)g i(t, x̄ , ˙̄x)− 1

2
p(t)T G(α, t)p(t)

�
= 0, α= 1, 2, . . . , r

with p(t) = 0

From the above relation it implies that ( x̄(t), ȳ(t), p(t) = 0) is feasible for
(Mix VD).

In view of
∑
i∈I0

ȳ i(t)g i(t, x̄ , ˙̄x) = 0, t ∈ I and p(t) = 0, t ∈ I , we have

∫

I

f (t, x̄ , ˙̄x)dt=

∫

I

�
f (t, x̄ , ˙̄x) +

∑

i∈I0

y i(t)g i(t, x̄ , ˙̄x)− 1

2
p(t)T H0(t)p(t)

�
dt

Furthermore, for every feasible solution (u(t), y(t), p(t)), from the condition we
have,

∫

I

�
f (t, x̄ , ˙̄x) +

∑

i∈I0

y i(t)g i(t, x̄ , ˙̄x)− 1

2
p(t)T H0(t)p(t)

�
dt

=

∫

I

f (t, x̄ , ˙̄x)dt

≥
∫

I

�
f (t, u(t), u̇(t)) +

∑

i∈I0

y i(t)g i(t, u(t), u̇(t))− 1

2
p(t)T H0(t)p(t)

�
dt

So, ( x̄(t), ȳ(t), p̄(t)) is also an optimal solution of (MixVD). ¤

The theorem given below is the Mangasarian type converse duality theorem:

Theorem 3.3 (Strict Converse duality). Let x̄ be an optimal solution of
(VP) and normal. If (bu, by ,bp) is an optimal solution to (Mix VD) and if∫

I

n
f (t, ·, ·) +

∑
i∈I0

y i(t)g i(t, ·, ·)
o

dt is second order strict pseudoinvex and
∑
i∈Iα

∫
I
by i(t)g i(t, ·, ·)dt, (α = 1, 2, . . . , r) is a second-order quasi-invex with respect

to η= η(t, x̄ ,bu), then x̄ = bu, i.e. bu is an optimal solution of (VP).

Proof. We assume that x̄(t) 6= bu(t), t ∈ I and show that the contradiction occurs.
Since x̄ is an optimal solution of (VP) and normal, it follows from Theorem 2 that
there exists piecewise smooth ȳ : R → Rm with ȳ(t) = ( ȳ1(t), ȳ2(t), . . . , ȳm(t))T

such that ( x̄(t), ȳ(t), p̄(t)) is optimal for (MixVD) and∫

I

{ f (t, x̄ , ˙̄x)}dt=

∫

I

�
f (t, x̄ , ˙̄x) +

∑

i∈I0

ȳ i(t)g i(t, x̄ , ˙̄x)− 1

2
p̄(t)T H0(t)p̄(t)

�
dt
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=

∫

I

�
f (t,bu, ḃu) +

∑

i∈I0

by i(t)g i(t,bu, ḃu)− 1

2
p̄(t)T H0(t)p̄(t)

�
dt (7)

Since x̄(t) is feasible for (VD) and bu(t), by(t), bp(t) is feasible for (MixVD), we have
∑

i∈Iα

∫

I

by i(t)g i(t, x̄ , ˙̄x)dt≤ 0, α= 1, 2, . . . , r

This, together with the feasibility bu(t), by(t),bp(t) for the dual problem (MixVD)
∑

i∈Iα

∫

I

by i(t)g i(t, x̄ , ˙̄x)dt

≤
∫

I

�∑

i∈Iα

by i(t)g i(t,bu, ḃu)− 1

2
p̄(t)T H0(t)p̄(t)

�
dt, (α= 1, 2, . . . , r)

This, in view of second-order quasi-invexity of
∑

i∈Iα

∫

I

by i(t)g i(t, ·, ·) (α= 1, 2, . . . , r)

gives∫

I

�
ηT
∑

i∈Iα

by i(t)g i
bu(t,bu, ḃu)+(Dη)T

�∑

i∈Iα

by i(t)g i
bu(t,bu, ḃu)

�
+ηT G(α, t)bp(t)

�
dt≤ 0.

This, by integration by parts, gives

0≥
∫

I

�
ηT
∑

i∈Iα

by i(t)g i
bu(t,bu, ḃu) + (Dη)T

�∑

i∈Iα

by i(t)g i
bu(t,bu, ḃu)

�
+ηT G(α, t)bp(t)

�
dt

+ηT
∑

i∈Iα

by i(t)g i
bu(t,bu, ḃu)

����
t=b

t=a

Using η
��t=b
t=a = 0, this gives

∫

I

ηT
�∑

i∈Iα

by i(t)g i
bu(t,bu, ḃu) + D

�∑

i∈Iα

by i(t)g i
bu(t,bu, ḃu)

�
+ G(α, t)bp(t)

�
dt≤ 0.

From (4) we have,∫

I

ηT
�

fbu+
∑

i∈Iα

by i(t)g i
bu(t,bu, ḃu)+D

�
fbu+
∑

i∈Iα

by i(t)g i
bu(t,bu, ḃu)

�
+H0(t)bp(t)

�
dt≥ 0.

This inequality, by integration by parts, gives,∫

I

�
ηT
�

fbu +
∑

i∈Iα

by i(t)g i
bu(t,bu, ḃu)

�

+ (Dη)T
�

fbu +
∑

i∈Iα

by i(t)g i
bu(t,bu, ḃu)

�
+ηT H0(t)bp(t)

�
dt≥ 0.
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which in view of second-order strict pseudoinvexity of∫

I

�
f (t, ·, ·) +

∑

i∈I0

by i g i(t, ·, ·)
�

dt

gives ∫

I

�
f (t, x̄ , ˙̄x) +

∑

i∈I0

by i g i(t, x̄ , ˙̄x)
�

dt

>

∫

I

�
f (t,bu, ḃu) +

∑

i∈I0

by i g i(t,bu, ḃu)− 1

2
bp(t)T H0(t)bp(t)

�
dt

Using
∑
i∈I0

by i g i(t, x̄ , ˙̄x)≤ 0, t ∈ I this yields

∫

I

{ f (t, x̄ , ˙̄x)}dt

>

∫

I

�
f (t,bu, ḃu) +

∑

i∈I0

by i g i(t,bu, ḃu)− 1

2
bp(t)T H0(t)bp(t)

�
dt

This contradicts the relation (7). Hence x̄(t) = bu(t), t ∈ I i.e. bu(t) is optimal
solution of (VP).

4. Special Cases

If Iα is empty for each α ∈ 1, 2, . . . , r, then H0(t) = H(t) (MixVD) reduces to the
following Wolfe type second-order dual variational problem treated by Chen [3].

If I0 is empty, then (MixVD) reduces to the following Mond-weir type second-
order dual variational problem recently treated by Husain et al. [5].

5. Natural Boundary Values

In this section, we present dual variational problem with natural boundary
values rather than fixed end points.

(VP0) Minimize

∫

I

f (t, x(t), ẋ(t))dt

subject to g(t, x , ẋ)≤ 0, t ∈ I

(MixVD0) Maximize

∫

I

�
f (t, u, u̇) +

∑

i∈I0

y i(t)g i(t, u, u̇)− 1

2
p(t)T H0(t)p(t)

�
dt

subject to

fu(t, u, u̇) + y(t)T gu(t, u, u̇)− D( fu̇ + y(t)T gu̇) +Hp(t)=0, t∈ I
∫

I

�∑

i∈I0

y i(t)g i(t, u, u̇)− 1

2
p(t)T G(α, t)p(t)

�
dt≥ 0
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�
fu̇(t, u, u̇) +

∑

i∈I0

y i(t)g i
u(t, u, u̇)

�����
t=b

t=a
= 0

∑

i∈Iα

y i(t)g i
u(t, u, u̇)

����
t=b

t=a
= 0, α= 1, 2, . . .

6. Mixed Type Nonlinear Programming Problems

If all the functions are independent of t, then we have following pair of
problems treated in Zhang and Mond [11] except that square root of a quadratic
form is to be omitted from the expression of the problems.

(VP0) Minimize f (x)

subject to g(x)≤ 0,

(MixCD0) Maximize f (u) +
∑

i∈I0

y i g i(u)− 1

2
p(t)T

�
∇2 f (u) +

∑

i∈I0

y i g i(u)
�

p

subject to ∇
�

f (u) +
∑

i∈I0

y i g i(u)
�
+∇2

�
f (u) +

∑

i∈I0

y i g i(u)
�

p = 0

∑

i∈Iα

y i g i(u)− 1

2
pT
�∑

i∈Iα

y i(u)g i(u)
�

p ≥ 0

y ≥ 0.
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