The Effect of Relativistic Quantum Corrections on the Thermal Properties of Three-Dimensional Spherical Semiconductor Quantum Dot Under a Magnetic Field

Authors

  • Suman Dahiya Department of Applied Physics, Delhi Technological University, New Delhi
  • Manthan Verma Department of Applied Physics, Delhi Technological University, New Delhi
  • Siddhartha Lahon Department of Physics, Kirori Mal College, University of Delhi, Delhi 110007
  • Rinku Sharma Department of Applied Physics, Delhi Technological University, New Delhi

DOI:

https://doi.org/10.26713/jamcnp.v5i1.908

Keywords:

Quantum dot, Magnetic field, Relativistic corrections, Pressure, Thermodynamic properties

Abstract

The ground state and excited states energies of 2-electron quantum dot with spherical harmonic oscillator type potential has been determined. The energy spectrum and wave functions for the quantum dot of asymmetric confinement are obtained by analytically solving the eigenvalue equation in the magnetic field. The effect of various relativistic corrections to kinetic energy, Darwin term and spin-orbit for the zero-dimensional structure to the energy eigenvalues and wave functions is also investigated. The thermal properties like internal energy, entropy and free energy are discussed graphically with radius of quantum dot and pressure and are found to have interesting dependence on the radius and pressure parameter with relativistic corrections for our model.

Downloads

Download data is not yet available.

References

E. Rotenberg, B.K. Freelon, H. Koh, A. Bostwick, K. Rossnagel, A. Schmid and S.D. Kevan, New J.Phys. 7, 114 (2005).

A. Goyal, I. Khatri, A.K. Singh and Man Mohan, Indian Journal of Pure and Applied Physics 53 604, (2015).

M.A. Reed, Sci. Am. 268, 118 (1993); O. Quasaimeh, K. Kamath, P. Bhattacharya, P.J. McCann and K. Namjou, App. Phys. Lett. 72, 1275 (1998).

S. Krishna, O. Quasaimeh, K. Kamath, P. Bhattacharya, P.J. McCann and K. Namjou, App. Phys. Lett. 76, 3355 (2000); H. Jiang and J. Singh, Physica E (Amsterdam) 2, 720 (1998).

M. Tanaka, H. Yamada, T. Maruyama and K. Akimoto, Phys. Rev. B 67, 045305 (2003); R. Khordad, A. Gharaati and M. Haghparast, Current Appl. Phys. 10, 199 (2010).

D.H. Feng, Z.Z. Xu, T.Q. Jia, X.X. Li and S.Q. Gong, Phys. Rev. B 68, 035334 (2003); R. Khordad, Physica E 41, 543 (2009).

B. Vaseghi, R. Khordad and M.M. Golshan, Phys. Status Solidi B 243, 2772 (2006); E. Sadeghi and R. Khordad, Brazil. J. Phys. 36, 1213 (2006).

S. Axelsson, E.E.B. Campbell, L.M. Jonsson, J. Kinaret, S.W. Lee, Y.W. Park and M. Sveningsson, New J. Phys. 7, 245 (2005).

T. Mano, T. Kuroda, K. Kuroda and K. Sakoda, J. Nanophoton. 3, 031605 (2009).

S. Sarmah and A. Kumar, Indian J. Phys. 84, 1211 (2010).

T. Mano, T. Kuroda, S. Sanguinetti, T. Ochiai, T. Tateno, J. Kim, T. Noda, M. Kawabe, K. Sakoda, G. Kido and N. Koguchi, Nano Lett. 5, 425 (2005).

T. Mano and N. Koguchi, J. Cryst. Growth 278, 108 (2005).

A. Ozpineci and S. Ciraci, Physical Review B 63(12), 125415 (2001).

B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel and C.T. Foxon, Chem. Phys. 60 (9), 848 – 850 (1988).

C. Cohen-Tannoudji, B. Diu and F. Laloí«, Quantum Mechanics, Wiley, New York, NY, USA (1977).

C. Kittel, Introduction to Solid State Physics, 8th edition, Wiley, New York, USA (2005).

C.Y. Chen, Y. You, X.H. Wang and S.H. Dong, Phys. Lett. A 377, 1521 (2013); R. Khordad, Superlatt. Microstruct. 110, 146 (2017).

R. Khordad, Indian J. Phys. 88, 275 (2014).

C. Sikorsky and U. Merkt, Phys. Rev. Lett. 62, 2164 (1989).

V.A. Holvatsky, O.M. Makhanets and O.M. Voitsekhivska, Physica E 41, 1522 (2009).

A. D'Andrea, R. Del Sole and K. Cho, Europhysics Letters 11(2), 169 – 174 (1990).

B. Boyacioglu and A. Chatterjee, J. Appl. Phys. 112, 083514 (2012); K.J. Bala, A. John Peter and C.W. Lee, Chem. Phys. 495, 42 (2017).

A. Bera and M. Ghosh, Physica B 515, 18 (2017).

C.Y. Chen and D.S. Sun, Acta Photon. Sin. 30, 104 (2001).

W. Xie, Chem. Phys. 423, 30 (2013).

D.B. Hayrapetyan, S.M. Amirkhanyan, E.M. Kazaryan and H.A. Sarkisyan, Physica E 84, 367 (2016).

O. Ciftja and M.G. Faruk, Phys. Rev. B 72, 205334 (2005).

G.H. Liu and K.X. Guo, Superlattices Microstruct. 52, 997 (2012); M.V. Carpio-Bernido and C.C. Bernido, Phys. Lett. A 134, 395 (1989).

A. Hernando, Europhysics News 34 (6), 209 (2003).

S.N. Saravanamoorthy, A. John Peter and C.W. Lee, Chem. Phys. 483 (2017), 1.

C.Y. Chen, F.L. Lu, D.S. Sun, Y. You and S.H. Dong, Ann. Phys. 371, 183 (2016).

A. Boda, D.S. Kumar, I.V. Sankar and A. Chatterjee, J. Mag. Mag. Mater. 418, 242 (2016).

V.G. Dubrovskii and N. Sibirev, Phy. Rev. B 77, 035414 (2008).

V. Schmidt, J.V. Wittemann and U. Gösele, Chem. Rev. 110, 361 (2010).

R. Khordad, Int. J. Thermophys. 34, 1148 (2013).

R. Khordad, Int. J. Theor. Phys. 52, 837 – 848 (2013).

Downloads

Published

2018-06-17
CITATION

How to Cite

Dahiya, S., Verma, M., Lahon, S., & Sharma, R. (2018). The Effect of Relativistic Quantum Corrections on the Thermal Properties of Three-Dimensional Spherical Semiconductor Quantum Dot Under a Magnetic Field. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 5(1), 41–53. https://doi.org/10.26713/jamcnp.v5i1.908

Issue

Section

Research Article