\(Ps^-\) and \(H^+_2\) Ions under Spatial Confinement

Authors

  • R. Chandra Department of Physics, Narula Institute of Technology, Agarpara, Kolkata 700 109
  • Jayanta K. Saha Department of Physics, Aliah University, Newtown, Kolkata 700156
  • S. Bhattacharyya Department of Physics, Acharya Prafulla Chandra College, New Barrackpore, Kolkata 700 131
  • T. K. Mukherjee Department of Physics, Narula Institute of Technology, Agarpara, Kolkata 700 109

DOI:

https://doi.org/10.26713/jamcnp.v5i1.785

Keywords:

Spatial confinement, Exotic three-body ions, Hylleraas basis, Correlation, Variational method

Abstract

The ground state energy eigenvalues of the spatially confined symmetric three-body exotic ions \(Ps^-\) and \(H^+_2\) have been determined under the framework of Rayleigh-Ritz variational method. The spatial confinement is simulated by considering an impenetrable spherical box of varying radius around the ion. The electron-electron correlation in \(Ps^-\)  and the protonproton correlation in \(H_+^2\) are properly taken care of by expanding the trial wavefunction in explicitly correlated Hylleraas type basis set. The critical radius and the corresponding critical pressure, at which the respective ions destabilize are also reported.

Downloads

Download data is not yet available.

References

A. Michels, J. De Boer, A. Bijl, Physica 4, 981 (1937).

A. Sommerfeld, H. Welker, Ann. Phys. 32, 56 (1938).

C. Laughlin, S. I. Chu, J. Phys. A 42, 265004 (2009).

J. Sabin, E. Brandas (Ed.), Adv. Quantum Chem. 58 and 59 (2009).

A. Flores-Riveros, N. Aquino, H. E. Montgomery Jr., Phys. Lett. A 374, 1246(2010).

Y. Yakar, B. Cakir, A. Ozmen, Int. J. Quant. Chem. 111, 4139 (2011).

H. E. Montgomery Jr., V. I. Pupyshev, Phys. Lett. A 377, 2880 (2013).

S. Bhattacharyya, J. K. Saha, P. K. Mukherjee, T. K. Mukherjee, Phys. Scr. 87, 065305 (2013).

A. P. Mills Jr., Phys. Rev. Lett. 46, 717 (1981).

H. Ceeh, C. Hugenschmidt, K. Schreckenbach, et al., Phys. Rev. A 84, 062508 (2011).

K. Michishio, T. Tachibana, H. Terabe, et al., Phys. Rev. Lett. 106, 153401 (2011) .

A. P. Mills Jr., Can. J. Phys. 91, 751 (2013).

Y. K. Ho, Phys. Rev. A 48, 4780 (1993).

G. W. F. Drake, M. Cassar, R. A. Nistor, Phys. Rev. A 65, 054501 (2002).

D. Lai, Rev. Mod. Phys. 73, 629 (2001).

Y. K. Ho, Proceedings of the 12th International Conference on Low Energy Antiproton Physics (LEAP2016), JPS Conf. Proc., 011027 (2017) https://doi.org/10.7566/JPSCP.18.011027

C. Sivaram and V. Krishan, Astrophysics Space Science 85, 31 (1982).

V. Dudnikov, A. Dudnikov, Fifth International Symposium on Negative Ions, Beams and Sources (NIBS 2016), AIP Conf. Proc. 1869, 020007-1?020007-6; doi: 10.1063/1.4995713

M. E. Molinar-Tabares, G. Campoy-Güereña, Journal of Computational and Theoretical Nanoscience 9, 894 (2012).

H. Olivares-Pilón, S. A. Cruz, Int. J. Quant. Chem. (2017) e25399. https://doi.org/10.1002/qua.25399

T. K. Mukherjee and P. K. Mukherjee, Phys. Rev. A 51, 4276 (1995).

J. A. Nelder and R. Mead, Computer Journal. 7, 308 (1965).

S. Bhattacharyya, J. K. Saha, and T. K. Mukherjee, Phys. Rev. A 91, 042515 (2015).

S. Bhattacharyya, J. K. Saha, P. K. Mukherjee and T. K. Mukherjee, Phys. Scr. 85, 065305 (2012).

J. K. Saha, S. Bhattacharyya and T. K. Mukherjee, Int. J. Quantum Chem. 116, 1802 (2016).

E. A. Carrillo-Delgado, I. Rodriguez-Vargas, S. J. Vlaev, PIERS Online 5, 137 (2009).

F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S. G. Chu, A. Y. Cho, Nature 358, 565 (1992).

Downloads

Published

2018-06-18
CITATION

How to Cite

Chandra, R., Saha, J. K., Bhattacharyya, S., & Mukherjee, T. K. (2018). \(Ps^-\) and \(H^+_2\) Ions under Spatial Confinement. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 5(1), 67–72. https://doi.org/10.26713/jamcnp.v5i1.785

Issue

Section

Research Article