Rashba Spin Orbit Interaction Effect on Spin Current in a Quantum Wire with Magnetic Field

Authors

  • Manoj Kumar Department of Physics and Astrophysics, University of Delhi, Delhi 110007; Department of Physics, Kirori Mal College, University of Delhi, Delhi 110007
  • Siddhartha Lahon Department of Physics and Astrophysics, University of Delhi, Delhi 110007; Department of Physics, Kirori Mal College, University of Delhi, Delhi 110007
  • Man Mohan Department of Physics and Astrophysics, University of Delhi, Delhi 110007

DOI:

https://doi.org/10.26713/jamcnp.v3i3.595

Keywords:

Spin current, quantum wire, spin orbit interaction, magnetic field

Abstract

We study the spin current in a quantum wire subjected to magnetic fields in the presence of Rashba spin orbit interaction. For an infinite superlattice wire, we find that the spin current density is strongly affected by the nature of the sub bands. The results are presented as a function of transverse coordinate, magnetic field and Rashba spin orbit interaction strength. Our results indicate an increase of spin current density with the increase of Rashba factor. The roles of confinement strength and magnetic fields as control parameters on the spin current have been demonstrated.

Downloads

Download data is not yet available.

References

G.A. Prinz, Magnetoelectronics, Science 282 (1998), 1660.

S. Bandyopadhyay, Physics of Nanostructured Solid State Devices, Springer (2012).

S. Lahon, P.K. Jha and M. Mohan, Nonlinear interband and intersubband transitions in quantum dots for multiphoton photodetectors, J. Appl. Phys. 109 (2011), 054311.

S. Lahon, M. Gambhir, P.K. Jha and M. Mohan, Multiphoton excitation of disc shaped quantum dot in presence of laser (THz) and magnetic field for bioimaging, Phys. Status Solidi B 247 (2010), 962.

S. Banerjee and D. Charkavorty, Review synthesis of conducting nanowires, J. Mater. Sci. 37 (2002), 4261.

M. Law, J. Goldberger and P. Yang, Semiconductor nanowires and nanotubes, Annu. Rev. Meter. Res. 34 (2004), 83.

S.V. Zaitsev-Zotov, Yu.A. Kumzerov, Yu.A. Firsov and P. Monceau, J. Phys.: Condens Matter 12 (2000), L303.

S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Htchelkanova and D.M. Treger, Luttinger-liquid-like transport in long InSb nanowires, Science 294 (2001), 1488.

I. Zutic, J. Fabian and S.D. Sharma, Spintronics: Fundamentals and applications, Rev. Mod. Physics 76 (2004), 223.

J.-F. Liu, Z.-C. Zhong, L. Chen, D. Li, C. Zhang and Z. Ma, Phys. Rev. B 76 (2007), 195304.

S. Datta and B. Das, Electronic analog of the electro-optic modulator, Appl. Phys. Lett. 56 (1990), 665.

J. Schliemann, J.C. Egues and D. Loss, Nonballistic spin-field-effect transistor, Phys. Rev. Lett. 90 (2003), 146801.

P. Stredaand and P. Seba, Antisymmetric spin filtering in one-dimensional electron systems with uniform spin-orbit coupling, Phys. Rev. Lett. 90 (2003), 256601.

E.I. Rashba, Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop, Sov. Phys. Solid State 2 (1960), 1109.

G. Dresselhaus, Spin-orbit coupling effects in zinc blende structures, Phys. Rev. 100 (1955), 580.

D. Grudler, Large Rashba splitting in InAs quantum wells due to electron wave function penetration into the barrier layers, Phys. Rev. Lett. 84 (2000), 6074.

F. Mireles and G. Kirczenow, Ballistic spin-polarized transport and Rashba spin precession in semiconductor nanowires, Phys. Rev. B 64 (2001), 24426.

E.A. de Andrada e Silva, Rashba spin splitting in semiconductor quantum wires, Phys. Rev. B 67 (2003), 165318.

X.F. Wang, Spin transport of electrons through quantum wires with a spatially modulated Rashba spin-orbit interaction, Phys. Rev. B 69 (2004), 35302.

S. Murakami, N. Nagaosa and S.C. Zhang, Dissipationless quantum spin current at room temperature, Science 301 (2003), 1348.

S. Murakami, N. Nagaosa and S.C. Zhang, SU(2) non-Abelian holonomy and dissipationless spin current in semiconductors, Phys. Rev. B 69 (2004), 235206.

J.-F. Liu, Z.-C. Zhong, L. Chen, D. Li, C. Zhang and Z. Ma, Enhancement of polarization in a spin-orbit coupling quantum wire with a constriction, Phys. Rev. B 76 (2007), 195304.

S. Pramanik, S. Bandyopadhyay and M. Cahay, Energy dispersion relations of spin-split subbands in a quantum wire and electrostatic modulation of carrier spin polarization, Phys. Rev. B 76 (2007), 155325.

J. Knobbe and T. Schäpers, Magnetosubbands of semiconductor quantum wires with Rashba spin-orbit coupling, Phys. Rev. B 71 (2005), 035311.

S. Zhang, R. Liang, E. Zhang, L. Zhang and Y. Liu, Magnetosubbands of semiconductor quantum wires with Rashba and Dresselhaus spin-orbit coupling, Phys. Rev. B 73 (2006), 155316.

Q.F. Sun and X.C. Xie, Definition of the spin current: The angular spin current and its physical consequences, Phys. Rev. B 72 (2005), 245305.

Q.F. Sun, X.C. Xie and J. Wang, Persistent spin current in nanodevices and definition of the spin current, Phys. Rev. B 77 (2008), 035327.

W. Yi, S.Wei and Z.G. Hui, Persistent spin current in a quantum wire with weak Rashba Spin–Orbit Coupling, Chin. Phys. Lett. 23 (2006), 3065.

P. Pfeffer and W. Zawadzki, Spin splitting of subband energies due to inversion asymmetry in semiconductor heterostructures, Semiconductor Science Technology 19 (2004), R1.

A.V. Moraz and C.H.W. Barnes, Effect of the spin-orbit interaction on the band structure and conductance of quasi-one-dimensional systems, Phys. Rev. B 60 (1999), 14272.

Downloads

Published

2016-12-31
CITATION

How to Cite

Kumar, M., Lahon, S., & Mohan, M. (2016). Rashba Spin Orbit Interaction Effect on Spin Current in a Quantum Wire with Magnetic Field. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 3(3), 167–174. https://doi.org/10.26713/jamcnp.v3i3.595

Issue

Section

Research Article