Effect on THz Surface Plasmons of A Density Modulated Relativistic Electron Beam in A Parallel Plane Semiconducting Structure
DOI:
https://doi.org/10.26713/jamcnp.v2i3.387Keywords:
THz surface plasmons, Semiconductors, Pre-bunching, REBAbstract
The excitation of terahertz (THz) surface plasmons by a density modulated relativistic electron beam propagating in a parallel plane semiconducting structure is investigated. The interaction of the electromagnetic surface wave with density modulated electron beam in the guiding structure is examined in the present work, which shows a significant enhancement in the radiation wave. The growth rate of the instability increases linearly with modulation index and reaches the largest value when the phase matching condition is satisfied in the generation of THz radiation wave, i.e., when the phase velocity of the THz radiation wave is comparable to the velocity of modulated beam. In addition, the growth rate of instability scales as one-third power of beam current and modulation index. Moreover,the surface plasmons resonance can be tuned in THz frequency range by the conventional doping concentration of the semiconductors.Downloads
References
M. Nagel, P.H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff and R. Buttner, Appl. Phys. Lett. 80, 154 (2002).
W. Zhang, A.K. Azad and D. Grischkowsky, Appl. Phys. Lett. 82, 2841 (2003).
C.M. Rhoads, E.K. Damon and B.A. Munk, Appl. Opt. 21, 2814 (1982).
C. Winnewisser, F. Lewen, J. Weinzierl and H. Helm, Appl. Opt. 38, 3961 (1999).
P.L. Marston, Nature 391, 841 (1998).
Y.X. Zhang, Y. Zhou, L. Dong and S.G. Liu, Appl. Phys. Lett. 102, 211104 (2013).
T.H. Isaac, J.G. Rivas, J.R. Sambles, W.L. Barnes and E. Hendry, Phys. Rev. B 77, 113411 (2008).
S.L. Dexheimer (ed.), Terahertz Spectroscopy, Principles and Applications, CRC Press (2008).
G. Ramian, Nucl. Instrum. Methods Phys. Res. A 31, 225 (1992).
D.W. Porterfield, T.W. Crowe, R.F. Bradley and N.R. Erickson, IEEE Trans. Microwave Theory Techn. MTT 47, 419 (1999).
P.H. Siegel, Terahertz technology, IEEE Trans. Microwave Theory Techn., MTT 50, 910 (2002).
D.H. Auston, K.P. Cheung, J.A. Valdmanis and D.A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984).
A. Bonvalet, M. Joffre, J.L. Martin and Migus, Appl. Phys. Lett. 67, 2907 (1995).
T. Nakazato, M. Oyamada, N. Niimura, S. Urasawa, O. Konno, A. Kagaya, R. Kato, T. Kamiyama, Y. Torizuka, T. Nanba, Y. Kondo, Y. Shibata, K. Ishi, T. Ohsaka and M. Ikezawa, Phys. Rev. Lett. 63, 1245 (1989).
T.M. Antonsen, Jr. and J. Palastro, Phys. Plasmas 14, 0333107 (2007).
H. Hamster, A. Sullivan, S. Gordon, W. White and R. Falcone, Phys. Rev. Lett. 71, 2725 (1993).
W.P. Leemans, J. van Tilborg, J. Faure, C.G.R. Geddes, Cs. Toth, C.B. Schroeder, E. Esarey, G. Fubiani and G. Dugan, Phys. Plasmas 11, 2899 (2004).
N. Yugami, T. Higashiguchi, H. Gao, S. Sakai, K. Takahashi, H. Ito, Y. Nishida and T. Katsouleas, Phys. Rev. Lett. 89, 65003 (2002).
J. Yoshi, C.H. Lai, T. Katsouleas, C. Joshi and W.B. Mori, Phys. Rev. Lett. 79, 4194 (1997).
Y. Shen, X. Yang, G.L. Carr, Y. Hidaka, J.B. Murphy and X. Wang, Phys. Rev. Lett. 107, 204801 (2011).
T.H. Isaac, W.L. Barnes and E. Hendry, App. Phys Lett. 93, 241115 (2008).
T.H. Isaac, J.G. Rivas, J.R. Sambles, W.L. Barnes and E. Hendry, Phys. Rev. B 77, 113411 (2008).
J.M. Byrd, Z. Hao, M.C. Martin, D.S. Robin, F. Sannibale, R.W. Schoenlein, A.A. Zholents and M.S. Zolotorev, Phys. Rev. Lett. 96, 164801 (2006).
F. Sannibale, J.M. Byrd, í. Loftsdóttir, M. Venturini, M.A. Bakr, J. Feikes, K. Holldack, P. Kuske, G. Wüstefeld, H.W. Hubers and R. Warnock, Phys. Rev. Lett. 93, 094801 (2004).
J.G. Neumann, R.B. Fiorito, P.G.O. Shea, H. Loos, B. Sheehy, Y. Shen and Z. Wu, J. App. Phys. 105, 053304 (2009).
M. Cohen, A. Kugel, D. Chairman, M. Arbel, H. Kleinman, D. Ben Haim, A. Eichenbaum, M. Draznin, Y. Pinhasi, I. Yakover and A. Gover, Nucl. Instrum. Methods Phys. Res. A 358, 82 (1995).
P. Freund, P.G. O'Shea and J. Neumann, Nucl. Instrum. Methods Phys. Res. A 507, 400 (2003).
S.C. Sharma, J. Sharma, A. Bhasin and R. Walia, J. Plasma Phys. 78, 635 (2012).
J.M. Ortega, Y. Lapierre, B. Girard, M. Billardon, P. Elleaume, C. Bazin, M. Bergher, M. Velghe and Y. Petroff, IEEE J. Quantum Electron 21, 909 (1985).
C.S. Liu and V.K. Tripathi, Electromagnetic Theory for Telecommunication, Cambridge University Press (2007).
S.C. Sharma and P. Malik, Phys. Plasmas 22, 043301 (2015).
B.D. Kong, V.N. Sokolov, K.W. Kim and R.J. Trew, IEEE J. Sensors 10, 443 (2002).
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.