Effect on THz Surface Plasmons of A Density Modulated Relativistic Electron Beam in A Parallel Plane Semiconducting Structure

Authors

  • Pratibha Malik Department of Applied Physics, Delhi Technological University, Delhi
  • Suresh C. Sharma Department of Applied Physics, Delhi Technological University, Delhi
  • Rinku Sharma Department of Applied Physics, Delhi Technological University, Delhi

DOI:

https://doi.org/10.26713/jamcnp.v2i3.387

Keywords:

THz surface plasmons, Semiconductors, Pre-bunching, REB

Abstract

The excitation of terahertz (THz) surface plasmons by a density modulated relativistic electron beam propagating in a parallel plane semiconducting structure is investigated. The interaction of the electromagnetic surface wave with density modulated electron beam in the guiding structure is examined in the present work, which shows a significant enhancement in the radiation wave. The growth rate of the instability increases linearly with modulation index and reaches the largest value when the phase matching condition is satisfied in the generation of THz radiation wave, i.e., when the phase velocity of the THz radiation wave is comparable to the velocity of modulated beam. In addition, the growth rate of instability scales as one-third power of beam current and modulation index. Moreover,the surface plasmons resonance can be tuned in THz frequency range by the conventional doping concentration of the semiconductors.

Downloads

Download data is not yet available.

References

M. Nagel, P.H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff and R. Buttner, Appl. Phys. Lett. 80, 154 (2002).

W. Zhang, A.K. Azad and D. Grischkowsky, Appl. Phys. Lett. 82, 2841 (2003).

C.M. Rhoads, E.K. Damon and B.A. Munk, Appl. Opt. 21, 2814 (1982).

C. Winnewisser, F. Lewen, J. Weinzierl and H. Helm, Appl. Opt. 38, 3961 (1999).

P.L. Marston, Nature 391, 841 (1998).

Y.X. Zhang, Y. Zhou, L. Dong and S.G. Liu, Appl. Phys. Lett. 102, 211104 (2013).

T.H. Isaac, J.G. Rivas, J.R. Sambles, W.L. Barnes and E. Hendry, Phys. Rev. B 77, 113411 (2008).

S.L. Dexheimer (ed.), Terahertz Spectroscopy, Principles and Applications, CRC Press (2008).

G. Ramian, Nucl. Instrum. Methods Phys. Res. A 31, 225 (1992).

D.W. Porterfield, T.W. Crowe, R.F. Bradley and N.R. Erickson, IEEE Trans. Microwave Theory Techn. MTT 47, 419 (1999).

P.H. Siegel, Terahertz technology, IEEE Trans. Microwave Theory Techn., MTT 50, 910 (2002).

D.H. Auston, K.P. Cheung, J.A. Valdmanis and D.A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984).

A. Bonvalet, M. Joffre, J.L. Martin and Migus, Appl. Phys. Lett. 67, 2907 (1995).

T. Nakazato, M. Oyamada, N. Niimura, S. Urasawa, O. Konno, A. Kagaya, R. Kato, T. Kamiyama, Y. Torizuka, T. Nanba, Y. Kondo, Y. Shibata, K. Ishi, T. Ohsaka and M. Ikezawa, Phys. Rev. Lett. 63, 1245 (1989).

T.M. Antonsen, Jr. and J. Palastro, Phys. Plasmas 14, 0333107 (2007).

H. Hamster, A. Sullivan, S. Gordon, W. White and R. Falcone, Phys. Rev. Lett. 71, 2725 (1993).

W.P. Leemans, J. van Tilborg, J. Faure, C.G.R. Geddes, Cs. Toth, C.B. Schroeder, E. Esarey, G. Fubiani and G. Dugan, Phys. Plasmas 11, 2899 (2004).

N. Yugami, T. Higashiguchi, H. Gao, S. Sakai, K. Takahashi, H. Ito, Y. Nishida and T. Katsouleas, Phys. Rev. Lett. 89, 65003 (2002).

J. Yoshi, C.H. Lai, T. Katsouleas, C. Joshi and W.B. Mori, Phys. Rev. Lett. 79, 4194 (1997).

Y. Shen, X. Yang, G.L. Carr, Y. Hidaka, J.B. Murphy and X. Wang, Phys. Rev. Lett. 107, 204801 (2011).

T.H. Isaac, W.L. Barnes and E. Hendry, App. Phys Lett. 93, 241115 (2008).

T.H. Isaac, J.G. Rivas, J.R. Sambles, W.L. Barnes and E. Hendry, Phys. Rev. B 77, 113411 (2008).

J.M. Byrd, Z. Hao, M.C. Martin, D.S. Robin, F. Sannibale, R.W. Schoenlein, A.A. Zholents and M.S. Zolotorev, Phys. Rev. Lett. 96, 164801 (2006).

F. Sannibale, J.M. Byrd, í. Loftsdóttir, M. Venturini, M.A. Bakr, J. Feikes, K. Holldack, P. Kuske, G. Wüstefeld, H.W. Hubers and R. Warnock, Phys. Rev. Lett. 93, 094801 (2004).

J.G. Neumann, R.B. Fiorito, P.G.O. Shea, H. Loos, B. Sheehy, Y. Shen and Z. Wu, J. App. Phys. 105, 053304 (2009).

M. Cohen, A. Kugel, D. Chairman, M. Arbel, H. Kleinman, D. Ben Haim, A. Eichenbaum, M. Draznin, Y. Pinhasi, I. Yakover and A. Gover, Nucl. Instrum. Methods Phys. Res. A 358, 82 (1995).

P. Freund, P.G. O'Shea and J. Neumann, Nucl. Instrum. Methods Phys. Res. A 507, 400 (2003).

S.C. Sharma, J. Sharma, A. Bhasin and R. Walia, J. Plasma Phys. 78, 635 (2012).

J.M. Ortega, Y. Lapierre, B. Girard, M. Billardon, P. Elleaume, C. Bazin, M. Bergher, M. Velghe and Y. Petroff, IEEE J. Quantum Electron 21, 909 (1985).

C.S. Liu and V.K. Tripathi, Electromagnetic Theory for Telecommunication, Cambridge University Press (2007).

S.C. Sharma and P. Malik, Phys. Plasmas 22, 043301 (2015).

B.D. Kong, V.N. Sokolov, K.W. Kim and R.J. Trew, IEEE J. Sensors 10, 443 (2002).

Downloads

Published

2015-12-31
CITATION

How to Cite

Malik, P., Sharma, S. C., & Sharma, R. (2015). Effect on THz Surface Plasmons of A Density Modulated Relativistic Electron Beam in A Parallel Plane Semiconducting Structure. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 2(3), 251–261. https://doi.org/10.26713/jamcnp.v2i3.387

Issue

Section

Research Article