Resonant Ion Beam Interaction with Whistler Waves in A Magnetized Dusty Plasma

Authors

  • Ruby Gupta Department of Physics, Swami Shraddhanand College, University of Delhi, Alipur, Delhi 110 036
  • Ved Prakash School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi 110 068
  • Suresh C. Sharma Department of Applied Physics, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi 110 042
  • . Vijayshri School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi 110 068
  • D. N. Gupta Department of Physics and Astrophysics, University of Delhi, Delhi 110 007

DOI:

https://doi.org/10.26713/jamcnp.v3i1.385

Keywords:

52

Abstract

The theory of whistler wave interaction with an ion beam injected parallel to the magnetic field in an unbounded plasma is considered. The excited whistler waves propagate parallel to the beam direction and their phase velocity is a characteristic of beam-whistler resonant cyclotron coupling. The frequency and the growth rate of the unstable wave increase with the relative density of negatively charged dust grains. The ion beam velocity responsible for maximum growth rate increases as the charge density carried by dust increases. The maximum value of growth rate increases with the beam density and is proportional to the square root of beam density. These results should shed light on mechanisms of whistler wave excitation in space plasmas by artificial beams injected from spacecraft in the ionosphere and the magnetosphere.

Downloads

Download data is not yet available.

References

H.A. Shah and V.K. Jain, J. Plasma Phys. 31 (1984), 22,.

L. James, L. Jassal and V.K. Tripathi, J. Plasma Phys. 54 (1995), 119.

R.C. Borcia, G. Matthieussent, E.L. Bel, F. Simonet and J. Solomon, Phys. Plasmas 7 (2000), 359.

C. Krafft, G. Matthieussent, P. Thevenet and S. Bresson, Phys. Plasmas 1 (1994), 2163.

I. Talukdar, V.K. Tripathi and V.K. Jain, J. Plasma Phys. 41 (1989), 231.

A. Volokitin, C. Krafft and G. Matthieussent, Phys. Plasmas 2 (1995), 4297.

K. Sauer and R.D. Sydora, Ann. Geophys. 28 (2010), 1317.

J.W. Cipolla, K.I. Golden, and M.B. Silevitch, Phys. Fluids 20 (1977), 282.

M.A. Dorf, I.D. Kaganovich, E.A. Startsev and R.C. Davidson, Phys. Plasmas 17 (2010), 23103.

C. Krafft, and A. Volokitin, Phys. Plasmas 5 (1998), 4243.

N. Baranets, Y. Ruzhin, N. Erokhin, V. Afonin, J. Vojta, J. Smilauer, K. Kudela, J. Matisin and M. Ciobanu, Advances in Space Res. 49 (2012), 859.

C. Krafft, P. Thevenet, G. Matthieussent, B. Lundin, G. Belmont, B. Lembege, J. Solomon, Lavergnat and T. Lehner, Phy. Rev. Lett. 72 (1994), 649.

M. Starodubtsev, C. Krafft, B. Lundin and P. Thevenet, Phys. Plasmas 6 (1999), 2862.

K. Akimoto, and D. Winske, J. of Geophys. Res. 94 (1989), 17259.

R. Barkan, N. D'Angelo and R.L. Merlino, Planet. Space Sci. 43 (1995), 905.

N. D'Angelo, Planet. Space Sci. 38 (1990), 1143.

R.L. Merlino, A. Barkan, C. Thompson and N. D'Angelo, Phys. Plasmas 5 (1998), 1607.

V. Prakash and S.C. Sharma, Phys. Plasmas 16 (2009), 93703.

V. Prakash, S.C. Sharma, Vijayshri and R. Gupta, Phys. Plasmas 21 (2014), 33701.

V. Prakash, S.C. Sharma, Vijayshri and R. Gupta, Laser Part. Beams 31 (2013), 411.

Downloads

Published

2016-01-30
CITATION

How to Cite

Gupta, R., Prakash, V., Sharma, S. C., Vijayshri, ., & Gupta, D. N. (2016). Resonant Ion Beam Interaction with Whistler Waves in A Magnetized Dusty Plasma. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 3(1), 45–53. https://doi.org/10.26713/jamcnp.v3i1.385

Issue

Section

Research Article