Excitation of Electromagnetic Surface Waves at A Conductor-Plasma Interface by An Electron Beam

Authors

  • Ved Prakash School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi 110 068
  • Ruby Gupta Department of Physics, Swami Shraddhanand College, University of Delhi, Alipur, Delhi 110 036
  • . Vijayshri School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi 110 068
  • Suresh C. Sharma Department of Applied Physics, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi 110 042

DOI:

https://doi.org/10.26713/jamcnp.v3i1.384

Keywords:

Surface plasma wave, Electron beam, Instability, Dispersion relation, Growth rate

Abstract

Electromagnetic surface waves are driven to instability on a conductor plasma interface via Cerenkov and fast cyclotron interaction by an electron beam. A dispersion relation and the growth rate of the instability for this process has been derived. Numerical calculations of the growth rate and unstable mode frequencies have been carried out for the typical parameters of the surface plasma waves. The plasma and beam responses are obtained using fluid treatment and the growth rate is obtained using the first-order perturbation theory. The growth rate increases with the beam density and scales as one-third power of the beam density in Cerenkov interaction and is proportional to the square root of beam density in fast cyclotron interaction. In addition, the real frequency of the unstable wave increases with the beam energy and scales as almost one half power of the beam energy. The effect of the plasma parameters and the strength of the external magnetic field on unstable frequencies and growth rates are analyzed.

Downloads

Download data is not yet available.

References

B. Buti, Advances in Space Plasma Physics, World Scientific, Singapore (1985).

A.W. Trivelpice and R.W. Gould, J. Appl. Phys. 30 (1959), 1784.

D.J. Cooperberg, Phys. Plasmas 5 (1998), 853.

K.L. Kartwright, P.J. Christenson, J.P. Verboncoeur and C.K. Birdsall, Phys. Plasmas 7 (2000), 1740.

C. Denton, J.L. Gervasoni, R.O. Barrachina and N.R. Arista, Phys. Rev. A 57 (1998), 4498.

C.S. Liu and V.K. Tripathi, IEEE J. of Quant. Electron. 34 (1998), 1503.

S.I. Khankina, V.M. Yakovenko and I.V. Yakovenko, Telecommun. Radio Eng. (Engl. Transl.) 59 (2003), 140.

V. Prakash and S.C. Sharma, Phys.Plasmas 16 (2009), 0937031.

R. Gupta, S.C. Sharma and V. Prakash, Phys. Plasmas 17 (2010), 122105.

R. Gupta, S.C. Sharma and V. Prakash, Phys. Plasmas 17 (2010), 112701.

R. Gupta, S.C. Sharma and V. Prakash, Phys. Plasmas 18 (2011), 053704.

I.O. Girka, V.O. Girka and I.V. Pavlenko, Progress in Electromagnetics Research M 21 (2011), 267,.

E. Kretschmann, Z. Phys. 241 (1971), 313.

C.S. Liu and V.K. Tripathi, IEEE Transections of Plasma Science 28 (2) (2000), 353.

N.C. Chen, W.C. Lien, C.R. Liu, Y.L. Huang, Y.R. Liu, C. Chou, S.Y. Chang and C.W. Ho, J. Appl. Phy. 109 (2011), 0431041.

V.N. Anisimov, V.Y. Baranov, O.N. Derkach, A.M. Dykhne, D.D. Malyuta, V.D. Pismennyi, B.P Rysev and A.Y. Sebrant, IEEE J. Quantum Electron 24 (1988), 675.

J. Parashar, H.D. Pandey and V.K. Tripathi, J. Plasma Phys. 59 (1998), 97.

A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, Francs, D.G. Colas, J.C. Weeber, A. Dereux, G.P. Wiederrecht and L. Novotny, Optics Letters 32 (2007), 2535.

A. Macchi, F. Cornolti and F. Pegoraro, Phys. Plasmas 9 (2002), 1704.

B. Shokri and B. Jazi, Phys. Plasmas 10(12) (2003), 4622.

N. Borisov and E. Neilsen, Annales Geophysicae 23 (2005), 1249.

G. Kumar and V.K. Tripathi, Phys. Plasmas 15 (2008), 073504.

C. S. Liu and V. K. Tripathi, Electromagnetic Theory for Telecommunications, Cambridge University Press, Delhi (2007).

Downloads

Published

2016-01-30
CITATION

How to Cite

Prakash, V., Gupta, R., Vijayshri, ., & Sharma, S. C. (2016). Excitation of Electromagnetic Surface Waves at A Conductor-Plasma Interface by An Electron Beam. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 3(1), 35–43. https://doi.org/10.26713/jamcnp.v3i1.384

Issue

Section

Research Article