Terahertz Radiation Emission from A Surface Wave Pumped Free Electron Laser

Authors

  • Jyotsna Panwar Department of Applied Physics, Delhi Technological University (DTU), Delhi
  • Suresh C. Sharma Department of Applied Physics, Delhi Technological University (DTU), Delhi
  • Rinku Sharma Department of Applied Physics, Delhi Technological University (DTU), Delhi

DOI:

https://doi.org/10.26713/jamcnp.v2i3.337

Keywords:

Terahertz radiation, FEL, SPW, Density modulation

Abstract

We develop an analytical formalism for tunable coherent terahertz (THz) radiation generation from bunched relativistic electron beam (REB) counter -propagating to the surface wave in the vacuum region Compton backscatters the surface wave. Plasma supports the surface wave that acquires a large wave number around pump wave frequency. The surface wave extends into vacuum region that can be employed as a wiggler for the generation of terahertz radiation. As the beam bunches pass through the surface plasma wave wiggler, they acquire a transverse velocity, constituting a transverse current producing coherent THz radiation. It was found that the terahertz power increases with electric field as well as with the thermal velocity of electrons. It was also found that the growth rate and efficiency of the instability both increases with the modulation index of the density modulated beam.

Downloads

Download data is not yet available.

References

M. Singh, S. Kumar and R.P. Sharma, Phys. Plasmas 18 (2011), 022304-1.

V. B. Pathak, D. Dahiya and V. K. Tripathi, J. Appl. Phys. 105 (2009), 013315-1.

T. M. Antonsen, Jr., J. Palastro and H. M. Milchberg, Phys Plasmas 14 (2007), 033107-1.

M. Cohen, A. Kugel, D. Chairman, M. Arbel, H. Kleinman, D. Ben-Haim, A. Eichenbaum, M. Draznin, Y. Pinhasi, I. Yakover and A. Grover, Nucl. Instr. & Meth. in Phys. Res. A (1995), 358.

C. Kraft, G. Matthieussent, P. Thevenet and S. Bresson, Phys. Plasmas 1 (1994), 2163.

V. Beniwal, S. C. Sharma and M. K. Sharma, Phys. Plasmas 11 (2004), 5716 .

Z.-Y. Chen, X.-Y. Li and W. Yu, Phys. Plasmas 20 (2013), 103115.

M. Kumar and V. K. Tripathi, Phys. Plasmas 19 (2012), 073109-1.

J. G. Neumann, R. B. Fiorito, P. G. S'Ohea, H. Loos, B. Sheehy, Y. Shen and Z. Wu, J. Appl. Phys. 105 (2009), 053304.

S. C. Sharma, J. Sharma, A. Bhasin and R. Walia, J. Plasma Physics 78 (2012), 635.

N. Yugami, T. Higashiguchi, H. Gao, S. Sakai, K. Takahashi, H. Ito, Y. Nishida and T. Katsouleas, Phys. Rev. Letter 89 (2002), 065003-1.

D. B. Singh, G. Kumar and V. K. Tripathi, J. Appl. Phys. 101 (2007), 043306-1.

C. Kraft, G. Matthiuessent and B. Lembege, Phys. Plasmas 1 (1994), 4082.

S. C. Sharma and V. K. Tripathi, IEEE Trans. Plasma Sci. 23 (1995), 792.

V. B. Pathak, D. Dahiya and V. K. Tripathi, J. Appl. Pays. 105 (2009), 013315-1.

C. S. Liu and V. K. Tripathi, IEEE Trans. Plasma Sci. 23 (1995), 459.

R. P. Sharma and R. K. Singh, Phys. Plasmas 21 (2014), 073101-1.

W. P. Leemans, J. van Tilborg, J. Faure, C. G. R. Geddes, Cs. Toth, C. B. Schroeder, E. Esarey, G. Fubiani and G. Dugan, Phys. Plasmas 11 (2004), 2899.

C. S. Liu and V. K. Tripathi, Electromagnetic Theory for Telecommunications, Foundation (Delhi, 2007).

C. S. Liu and V. K. Tripathi, Interaction of Electromagnetic waves with Electron Beams and Plasmas (World Scientific Singapore, 1994).

Downloads

Published

2015-12-28
CITATION

How to Cite

Panwar, J., Sharma, S. C., & Sharma, R. (2015). Terahertz Radiation Emission from A Surface Wave Pumped Free Electron Laser. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 2(3), 169–178. https://doi.org/10.26713/jamcnp.v2i3.337

Issue

Section

Research Article