Relativistic Many-body Calculations for Electric Dipole Moments in \(^{129}\)Xe, \(^{199}\)Hg, \(^{223}\)Rn, \(^{225}\)Ra and \(^{171}\)Yb Atoms

Authors

  • Yashpal Singh Theoretical Physics Division, Physical Research Laboratory, Ahmedabad 380009
  • B. K. Sahoo Theoretical Physics Division, Physical Research Laboratory, Ahmedabad 380009

DOI:

https://doi.org/10.26713/jamcnp.v2i2.333

Keywords:

Coupled-cluster theory, Nuclear Schiff moment, Tensor-pseudotensor interaction, CPviolation, Electron correlation

Abstract

We present and compare the results of permanent electric dipole moments (EDMs) of various closed-shell atoms due to the nuclear Schiff moment (NSM) and the tensor-pseudotensor (T-PT) interactions between the atomic nuclei and electrons. In order to highlight the role of electron-correlation effects in obtaining accurate EDM results, we employ a number of relativistic many-body methods including coupled-cluster theory at different degrees of approximation. On combining our results obtained from the relativistic coupled-cluster (RCC) at the levels of singles and doubles excitations (CCSD method) with the available EDM measurements we obtain accurate bounds on the couplings \(S\) and \(C_T\) associated with the respective NSM and T-PT interactions. The most precise EDM measurement on \(^{199}\)Hg in combination with our CC results yield limits on the above couplings as \(S<1.45 \times 10^{-12}|e|\)fm\(^3\) and \(C_T < 2.09 \times 10^{-9}\) respectively. Further combining these bounds with the latest nuclear structure and quantum chromodynamics calculations we infer limits on the strong CP-violating parameter and for the combined up- and down- quark chromo-EDMs as \(|\bar{\theta}| < 1.1 \times 10^{-9}\) and \(|\widetilde{d}_u - \widetilde{d}_d| < 2.8 \times 10^{-26} |e|\)cm, respectively.

Downloads

Download data is not yet available.

References

J. H. Christenson, J. W. Cronin, V. L. Fitch and R. Turlay, Phys. Rev. Lett. 13 (1964), 138.

K. Abe et al., Phys. Rev. Lett. 87 (2001), 091802.

B. Aubert et al., Phys. Rev. Lett. 87 (2001), 091801.

R. Aaij et al., Phys. Rev. Lett. 110 (2013), 221601.

L. D. Landau, Sov. Phys. JETP 5 (1957), 336.

I. B. Khriplovich and S. K. Lamoreaux, CP Violation without Strangeness, Electric Dipole Moments of Particles, Atoms and Molecules, (Springer, Berlin, 1997).

G. Luders, Ann. Phys. (N.Y.) 281 (2000), 1004.

S. M. Barr, Int. J. Mod. Phys. A 8 (1993), 209.

W. C. Griffith et al., Phys. Rev. Lett. 102 (2009), 101601.

T. Furukawa et al., J. Phys. Conf. Ser. 312 (2011), 102005.

A. Yoshimi et al., Phys. Lett. A 304 (2002), 13.

T. Inoue et al., Hyperfine Interactions (Springer Netherlands) 220 (2013), 59.

E. T. Rand et al., J. Phys. Conf. Ser. 312 (2011), 102013.

D. S. Weiss, Private communication.

D. Heinzen, Private communication.

J. Engel, M. J. Ramsey-Musolf and U. van Kolck, Prog. Part. Nucl. Phys. 71 (2013), 21.

V. V. Flambaum, I. B. Khriplovich and O. P. Sushkov, Nuc. Phys. A 449 (1986), 750.

M. Pospelov and A. Ritz, Ann. Phys. (N.Y.) 318 (2005), 119.

V. V. Flambaum and J. S. M. Ginges, Phys. Rev. A 65 (2002), 032113.

V. A. Dzuba, V. V. Flambaum and S. G. Porsev, Phys. Rev. A 80 (2009), 032120.

A. M. Maartensson-Pendrill, Phys. Rev. Lett. 54 (1985), 1153.

V. A. Dzuba et al., Phys. Rev. A 66 (2002), 012111.

K. V. P. Latha, D. Angom, B. P. Das and D. Mukherjee, Phys. Rev. Lett. 103 (2009), 083001.

Y. Singh, B. K. Sahoo and B. P. Das, Phys. Rev. A 89 (2014), 030502(R).

B. K. Sahoo, Y. Singh and B. P. Das, Phys. Rev. A 90 (2014), 050501(R).

Y. Singh and B. K. Sahoo, Phys. Rev. A 92 (2015), 022502.

S. Pal, M. D. Prasad and D. Mukherjee, Pramana 18 (1982), 261.

I. Shavitt and R. J. Bartlett, Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory, p. 350, First Edition, Cambridge University Press, New York (2009).

Y. Singh and B. K. Sahoo, Phys. Rev. A 91 (2015), 030501.

Y. Singh, B. K. Sahoo and B. P. Das, Phys. Rev. A 88 (2013), 062504.

K. V. P. Latha and P. R. Amjith, Phys. Rev. A 87 (2013), 022509.

P. Fierlinger et al., Cluster of Excellence for Fundamental Physics, Technische Universität München (http://www.universe-cluster.de/fierlinger/xedm.html).

U. Schmidt et al. Collaboration of the Helium Xenon EDM Experiment, Physikalisches Institut, University of Heidelberg (http://www.physi.uni-heidelberg.de/Forschung/ANP/XenonEDM/Team).

V. F. Dmitriev and R. A. Senkov, Phys. Rev. Lett. 91 (2003), 21.

C. A. Baker et al., Phys. Rev. Lett. 97 (2006), 131801.

W. Dekens et al., JHEP 1407 (2014), 069.

M. Pospelov, Phys. Lett. B 530 (2002), 123.

R. H. Parker et al., Phys. Rev. Lett. 114 (2015), 233002.

N. Auerbach, V. V. Flambaum and V. Spevak, Phys. Rev. Lett. 76 (1996), 4316.

V. Spevak, N. Auerbach and V. V. Flambaum, Phys. Rev. C 56 (1997), 1357.

M. V. Romalis and E. N. Fortson, Phys. Rev. A 59 (1999), 4547.

J. Dobaczewski and J. Engel, Phys. Rev. Lett. 94 (2005), 232502.

J. Engel, M. J. Ramsey-Musolf and U. van Kolck, Prog. Part. Nucl. Phys. 71 (2013), 21.

W. Dekens et al., JHEP 1407 (2014), 069.

M. Pospelov, Phys. Lett. B 530 (2002), 123.

Downloads

Published

2015-12-20
CITATION

How to Cite

Singh, Y., & Sahoo, B. K. (2015). Relativistic Many-body Calculations for Electric Dipole Moments in \(^{129}\)Xe, \(^{199}\)Hg, \(^{223}\)Rn, \(^{225}\)Ra and \(^{171}\)Yb Atoms. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 2(2), 115–125. https://doi.org/10.26713/jamcnp.v2i2.333

Issue

Section

Research Article