Structural Properties, Conductivity, Dielectric Studiesand Modulus Formulation of Ni Modified ZnO Nanoparticles

Authors

  • Sarita Sharma Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana
  • Kirti Nanda Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana
  • R. S. Kundu Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana
  • R. Punia Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana; and Department of Physics, Indira Gandhi University, Meerpur, Rewari 123401, Haryana
  • N. Kishore Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana

DOI:

https://doi.org/10.26713/jamcnp.v2i1.307

Keywords:

Sol-gel technique, Rietveld refinement, AC conductivity, Dielectric studies

Abstract

In the present manuscript, we have reported the structural, ac conductivity, dielectric studies and modulus formulation of Zn$_{1-x}$Ni$_x$O $(x=0.00,0.10,0.20,0.30)$ nanoparticles synthesized by sol-gel technique. The Rietveld refinement of X-ray powder diffraction data reveals that the samples possess hexagonal structure (space group - P63mc) of ZnO. The low intensity diffraction peaks corresponding to NiO comes into existence, it is suggested that phase segregation has occurred in the Ni doped ZnO nanoparticles. Average crystallite size has been estimated from XRD patterns, which is found to increase with increase in Ni content. AC conductivity and dielectric properties of Ni doped ZnO nanoparticles have been studied as a function of frequency (100 Hz to 10 MHz) of the applied ac signal in the temperature range of 323K to 463 K. The results showed that ac conductivity increases while other parameters such as the real dielectric constant $\varepsilon'$ and dielectric loss $\tan\delta$ decreases with frequency of applied field. The values of parameters $\varepsilon'$, $\tan\delta$ and ac conductivity are found to increase with increase temperature. In all the samples small polaron conduction mechanism is predominant. The variation of $\varepsilon'$, $\tan\delta$ and ac conductivity is observed to increase with increase in Ni dopant concentration in ZnO. The results of electrical modulus to study the relaxation dynamics of charge carriers indicate the presence of non-Debye type of relaxation in present samples.

Downloads

Download data is not yet available.

References

U. Ozgur, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho and H. Morkoc, J. Appl. Phys. 98 (2005), 041301.

A.A. Baladin and K.I. Wang, Handbook of Semiconductors Nanostructures and Nanodevices, American Scientific Publisher, Los Angles (2006).

T. Gordon, M. Kopel, J. Grinblat, E. Banin and S. Margel, Mater. Chem. 22 (2012), 3614–3623.

F. Ruske, M. Roczen, K. Lee, M. Wimmer, S. Gall, J. Hupkes, D. Hruski and B. Rech, J. Appl. Phys. 107 (1) (2010), 013708.

S. Maniv and A. Zangvil, J. Appl. Phys. 49 (1978), 2787.

E. Fortunato, P.M.C. Barquinha, A. Pimentel, A.M.F. Goncalves, A.J.S. Marques, L.M.N. Pereira and R.F.P. Martins, Adv. Mat. 17 (2005), 590.

T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Science 287 (2000), 1019.

H. Ohno, H. Munekata, T. Penney, S. VonMolnar and L.L. Chang, Phys. Rev. Lett. 68 (1992), 2264–2667.

J.H. Zheng, J.L. Song, X.J. Li, Q. Jiang and J.S. Tian, Cryst. Res. Technol. 46 (2011), 1143–1148.

R. Slama, F. Ghribi, A. Houas, C. Barthou and L.E. Mir, Int. J. of Nanoelectronics and Materials 3 (2013), 133–142.

M. Nirmala and A. Anukaliani, Photonics. Letters of Poland 2 (2010), 189–191.

R. Chander, J. Optoelectron. Adv. Mater. 13 (2011), 409–411.

R. Elilarassi and G. Chandrasekaran, Am. J. Mater. Sci. 2 (2012), 46–50.

M. El-Hilo, A.A. Dakhel and A.Y. Ali-Mohamed, J. Magn. Magn. Mater. 321 (2009), 2279–2283.

R. Elilarassi and G. Chandrasekaran, Mater. Chem. Phys. 123 (2010), 450–455.

T. Harbi, J. Alloy. Compd. 509 (2011), 387–390.

S. Udayakmar, V. Renuga and K. Kavitha K, Int. J. Recent Sci. Res. 3 (2012), 118–122.

L. Lutterotti, P. Scardi and P. Maistrelli, J. Appl. Crystallogr. 25 (1992), 459–462.

H.M. Rietveld, Acta Crystallogr. 22 (1967), 151–152.

R.A. Young, Introduction to the Rietveld Method, Oxford University Press, Oxford, pp. 1–38 (1993).

E.J. Mittemeijer and P. Scardi, Diffraction Analysis of the Microstructure of Materials, Springer, Germany (2004).

G.J. Hung, J.B. Wang, X.L. Zhong, G.C. Zhou and H.L. Yan, J. Mater. Sci. 42 (2007), 6464–6468.

W. Li and R.W. Schwartz, Appl. Phys. Lett. 89 (2006), 242906.

B. Gokul, P. Matheswaran, K.M. Abhirami and R. Sathyomoorthy, J. Non-Crys. Solids 363 (2013), 161–166.

F. Barsoukov and J.R. Macdonald, Impedance Spectroscopy Theory Experiment and Applications, Wiley-Interscience Press, New York, 2005.

R. Punia, R.S. Kundu, S. Murugavel and N. Kishore, J. Appl. Phys. 112 (2012), 113716.

R. Punia, R.S. Kundu, M. Dult, S. Murugavel and N. Kishore, J. Appl. Phys. 112 (2012), 083701.

L. Zhang, Appl. Phys. Lett. 87 (2005), 022907.

M.A. Ahmed, E. Ateia and S.I. El-Dek, J. Matter. Lett. 57 (2003), 4256.

M.A. Ahmed and M.A. El Hiti, J. Chem. Phys. 23 (1995), 1883.

M. Dult, R.S. Kundu, S. Murugavel, R. Punia and N. Kishore, Phys. B 452 (2014), 102–107.

Y.S. Wang, P.J. Thomas and P.O. Brien, J. Phys. Chem. B 110 (2006), 21412.

D.P. Almond, G.K. Dunceen and A.R. West, Solid State Ionics 8 (1983), 159.

K.W. Wagner, Am. J. Phys. 40 (1973)317.

B. Jaing, J.L. Peng, L.A. Bushil and W.L. Zhong, J. Appl. Phys. 87 (7) (2000), 3462.

M. Mei, Z. Lide and W. Guozheng, Nanostruct. Mater. 6 (1995).

B.P. Das, P.K. Mahapatra and R.N.P. Choudhary, J. Mater. Sci.: Materials in Electronics 15 (2004), 107–114.

R.G. Kharabe, R.S. Devan, C.M. Kanamadi and B.K. Chougule, Smart. Struct. 15 (2006), N36–N39.

R. Vaish and K.B.R. Varma, J. Appl. Phys. 106 (2009), 114109.

K. Majhi, K.B.R. Varma and K.J. Rao, J. Appl. Phys. 106 (2009), 084106.

P. Sharma, D.K. Kanchan, M. Pant and K. Padamasree, Indian Journal of Pure and Applied Physics 48 (2010), 39–46.

R. Bergman, J. Appl. Phys. 88 (2000), 1356.

N. Ponpandian and A. Narayanasamy, J. Appl.Phys. 92 (2002), 2770–2778.

Z. Li and H.Q. Fan, J. Appl. Phys. 106 (2009), 054102.

Downloads

Published

2015-07-30
CITATION

How to Cite

Sharma, S., Nanda, K., Kundu, R. S., Punia, R., & Kishore, N. (2015). Structural Properties, Conductivity, Dielectric Studiesand Modulus Formulation of Ni Modified ZnO Nanoparticles. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 2(1), 15–31. https://doi.org/10.26713/jamcnp.v2i1.307

Issue

Section

Research Article