Dynamics of Periodically Modulated Cavity Frequency of A Microwave Cavity Consisting of Cold Atoms

Authors

  • Sonam Mahajan Department of Physics and Astrophysics, University of Delhi, Delhi 110007
  • Neha Aggarwal Department of Physics and Astrophysics, University of Delhi, Delhi 110007; Department of Physics, ARSD College, University of Delhi (South Campus), New Delhi 110021
  • Aranya B. Bhattacherjee Department of Physics, ARSD College, University of Delhi (South Campus), New Delhi 110021; School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067
  • Man Mohan Department of Physics and Astrophysics, University of Delhi, Delhi 110007

DOI:

https://doi.org/10.26713/jamcnp.v1i1.224

Keywords:

Cold atoms, Microwave cavity, Two-photon process

Abstract

We investigate the possibility to enhance the atomic fluorescence and using it to measure the ‘second' by means of a quantum device formed by two-level cold atoms confined in a microwave cavity with harmonically modulated cavity frequency. Besides the harmonically modulated cavity frequency, we have also studied the modification in the atomic fluorescence due to the addition of the squeezing term in the Hamiltonian of the system. The periodic modulation of cavity frequency give rise to non adiabatic process characterized as two-photon process. It has been observed that the two-photon process can be used as a new handle to enhance the atomic fluorescence which helps in improving the accuracy of the atomic fountain clocks.

Downloads

Download data is not yet available.

References

M. H. Anderson et al., Science 269, 198 (1995).

C. C. Bradley et al., Phys. Rev. Lett. 75, 1687 (1995).

K. B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995).

F. Biraben, Eur. Phys. J.-Special Topics 172, 109 (2009).

J. Guena et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 391 (2012).

I. Bloch, J. Dalibard and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).

S. Giorgini, L. P. Pitaevskii and S. Stringari, Rev. Mod. Phys. 80, 1215 (2008).

R. Wynands and S. Weyers, Metrologia 42, 64 (2005).

D. M. Meekhof et al., IEEE Trans. Instrum. Meas. 50, 507 (2001).

S. Weyers et al., Metrologia 38, 343 (2001).

L. Marmet et al., Proc. IEEE International Frequency Control Symposium, p. 386 (2008).

K. Szymaniec, W. Chalupezak and D. Henderson, Proc. IEEE International Frequency Control Symposium and PDA Exhibition, p. 112 (2003).

M. Kumagai et al., Proc. IEEE International Frequency Control Symposium and PDA Exhibition, p. 120 (2003).

M. Kumagai et al., Proc. European Frequency and Time Forum 07 (EETF07), Geneva, Switzerland, p. 602 (2007).

Y. T. Kwon et al., IEEE Trans. Instrum. Meas. 52, 263 (2003).

F. Levi et al., Proc. IEEE International Frequency Control Symposium and PDA Exhibition, p. 199 (2003).

A. Clairon et al., IEEE Trans. Instrum. Meas. IM44, 128 (1995).

A. Sen Gupta et al., CPEM 2010 Technical Digest (2010).

K. Gibble and S. Chu, Metrologia 29, 201 (1992).

S. N. Lea et al., Physica Scripta T51, 78 (1994).

Ashish Agarwal and A. Sen Gupta, MAPAN 27, 169 (2012).

B. S. Dewitt, Phys. Rep. 19, 295 (1975).

S. A. Fulling and P. C. W. Davies, Proc. R. Soc. London, Ser. A 348, 393 (1976).

E. Yablonovitch, Phys. Rev. Lett. 62, 1742 (1989).

V. V. Hizhnyakov, Quantum Opt. 4, 277 (1992).

J. Schwinger, Proc. Natl Acad. Sci. USA 89, 4091 (1992).

C. K. Law, Phys. Re. A 49, 433 (1994).

S. Sarkar, Quantum Opt. 4, 345 (1992).

A. V. Dodonov et al., J. Phys. B: At. Mol. Opt. Phys. 44, 225502 (2011).

R. Wynands and S. Weyers, Metrologia 42, S64 (2005).

F. Levi et al., IEEE Trans. Ultrason. Ferroelectrics Freq. Control 51, 1216 (2004).

K. Szymaniec et al., Metrologia 42, 49 (2005).

S. R. Jefferts et al., Metrologia 39, 321 (2002).

S. Bize et al., C. R. Physique 5, 829 (2004).

E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).

A. V. Dodonov, V. V. Dodonov, Phys. Rev. A 85, 015805 (2012).

A. V. Dodonov, V. V. Dodonov, Phys. Rev. A 85, 055805 (2012).

Downloads

CITATION

How to Cite

Mahajan, S., Aggarwal, N., Bhattacherjee, A. B., & Mohan, M. (2014). Dynamics of Periodically Modulated Cavity Frequency of A Microwave Cavity Consisting of Cold Atoms. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 1(1), 11–18. https://doi.org/10.26713/jamcnp.v1i1.224

Issue

Section

Research Article