Pressure Ionization, Polarizability and Screening Constants in Confined Hydrogen Like Ions of Astrophysical Importance

Authors

DOI:

https://doi.org/10.26713/jamcnp.v8i2.1684

Keywords:

Confined atoms, Pressure ionization, Polarizability, Numerov method

Abstract

An extensive non-relativistic study of the confined Hydrogenic ions of Astrophysical importance like CVI, NVII and OVIII is made in the framework of a simple model of a spherical penetrable box. The detailed calculations of the energy eigenvalues of these ions have been performed. The variation of the energy levels with the spatial restrictions in the form of the variation in the confinement radii or size of the box and the strength of the penetrable wall is investigated. The solution of the radial Schrodinger equation is done numerically using the highly efficient Numerov method which is generally employed to solve the second order ordinary differential equations without the first order term. A point worth mentioning is that with the decrease in confinement radius, the bound state transformed into continuum states, resulting Pressure ionization which we find in Astrophysical Objects under extreme pressure. We also find effect of confinement on several useful quantities like polarizability and Screening constants.

Downloads

Download data is not yet available.

References

N. Aquino, Accurate energy eigenvalues for enclosed hydrogen atom within spherical impenetrable boxes, International Journal of Quantum Chemistry 54 (1995), 107 – 115, DOI: 10.1002/qua.560540206.

F. C. Auluck, White dwarf and harmonic oscillator, Proceedings of the National Institute of Sciences of India, 8 (1942), 147, URL: https://insa.nic.in/writereaddata/UpLoadedFiles/PINSA/Vol08_1942_2_Art01.pdf.

F. C. Auluck and E. A. Milne, The theory of pressure ionization and the constitution of white dwarf stars, Monthly Notices of the Royal Astronomical Society 99(3) (1939), 239 – 247, DOI: 10.1093/mnras/99.3.239.

D. A. Berg, D. K. Erb, R. B. C. Henry, E. D. Skillman and K. B. W. McQuinn, The chemical evolution of carbon, nitrogen, and oxygen in metal-poor dwarf galaxies, The Astrophysical Journal 874 (2019), 93, DOI: 10.3847/1538-4357/ab020a.

S. Goldman and C. Joslin, Spectroscopic properties of an isotropically compressed hydrogen atom The Journal of the Physical Chemistry 96 (1992), 6021 – 6027, DOI: 10.1021/j100193a069.

S. R. DeGroot and C. A. Ten Seldam, On the energy levels of a model of the compressed hydrogen atom, Physica 12 (1946), 669 – 682, DOI: 10.1016/S0031-8914(46)80096-X.

T. Guillot, A comparison of the interiors of Jupiter and Saturn, Planetary and Space Science 47(10-11) (1999), 1183 – 1200, DOI: 10.1016/S0032-0633(99)00043-4.

L. Jacak, A. Wójs and P. Hawrylak, Quantum Dots, 1st edition, Springer, Berlin — Heidelberg (1998), DOI: 10.1007/978-3-642-72002-4.

C. Laughlin, B. L. Burrows and M. Cohen, A hydrogen-like atom confined within an impenetrable spherical box, Journal of Physics B: Atomic, Molecular and Optical Physics 35 (2002), 701, DOI: 10.1088/0953-4075/35/3/320.

C. Laughlin, On the dipole polarizability of a hydrogen-like atom confined in an impenetrable spherical box, Journal of Physics B: Atomic, Molecular and Optical Physics 37 (2004), 4085, DOI: 10.1088/0953-4075/37/20/004.

E. Ley-Koo and S. Rubinstein, The hydrogen atom within spherical boxes with penetrable walls, Journal of Chemical Physics 71 (1979), 351, DOI: 10.1063/1.438077.

A. Michels, J. De Boer and A. Bijl, Remarks concerning molecural interaction and their influence on the polarisability, Physica 4 (1937), 981 – 994, DOI: 10.1016/S0031-8914(37)80196-2.

B. Saha, P. K. Mukherjee and G. H. F. Diercksen, Energy levels and structural properties of compressed hydrogen atom under Debye screening, Astronomy & Astrophysics 396 (2002), 337 – 344, DOI: 10.1051/0004-6361:20021350.

D. S. Saumon, G. Chabrier, D. J. Wagner and X. Xie, Modeling pressure-ionization of hydrogen in the context of astrophysics, High Pressure Research 16(5-6) (2000), 331 – 343, DOI: 10.1080/08957950008201434.

A. Sommerfeld and H. Welker, Künstliche Grenzbedingungen beim Keplerproblem, Annalen der Physik (Leipzig) 424 (1938), 56 – 65, DOI: 10.1002/andp.19384240109.

Downloads

Published

2021-10-31
CITATION

How to Cite

Joshi, R., Kumar, P., Jha, A. K. S., & Kumar, T. (2021). Pressure Ionization, Polarizability and Screening Constants in Confined Hydrogen Like Ions of Astrophysical Importance. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 8(2), 83–94. https://doi.org/10.26713/jamcnp.v8i2.1684

Issue

Section

Research Article