Quantum Optical Analysis of Atomic Density and Refractive Index Employing Cavity Enhanced Absorption Spectroscopy
DOI:
https://doi.org/10.26713/jamcnp.v8i2.1671Keywords:
Quantum optical response, Cavity enhanced absorption spectroscopy, Fluctuation dynamicsAbstract
We propose a novel cavity enhanced absorption spectroscopic technique to sensitively measure atomic density and refractive index of a sample gas.We theoretically investigate the quantum optical response of a gas of atoms enclosed inside an optical cavity to a probe beam that passes through it. In particular, we study the intracavity spectra, the output spectra and the spectra of the fluctuations. We show that the response of the system is sensitive to small changes in the number of atoms and the refractive index.
Downloads
References
K. Atherton, G. Stewart and B. Culshaw, Gas detection by cavity ringdown absorption with a fiber optic amplifier loop, Proceedings SPIE 4577, Vibrational Spectroscopy-based Sensor Systems 4577 (2002), 25 – 31, DOI: 10.1117/12.455741.
Q. He, F. Badshah, T. Alharbi, L. Li and L. Yang, Normal-mode splitting in a linear and quadratic optomechanical system with an ensemble of two-level atoms, Journal of the Optical Society of America B 37 (2020), 148 – 156, DOI: 10.1364/JOSAB.37.000148.
C. N. Banwell and E. M. McCsah, Fundamentals of Molecular Spectroscopy, 4th edition, McGraw Hill Education (India) Pvt. Ltd., Chennai (2018).
K. W. Busch and M. A. Busch, Cavity-Ringdown Spectroscopy, ACS Symposium series, American Chemical Society, Washington DC (1999), DOI: 10.1021/bk-0720.
M. J. Collett and C. W. Gardiner, Squeezing of intracavity and traveling-wave light fields produced in parametric amplification, Physical Review A 30 (1984), 1386 – 1391, DOI: 10.1103/PhysRevA.30.1386.
A. Czy˙zewski, S. Chudzy´ nski, K. Ernst, G. Karasi ´ nski, L. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch and P. Rairoux, Cavity ring-down spectrography, Optics Communications 191 (2001), 271 – 275, DOI: 10.1016/S0030-4018(01)01134-8.
J.-F. Doussin, R. Dominique and C. Patrick, Multiple-pass cell for very-long-path infrared spectrometry, Applied Optics 38 (1999), 4145 – 4150, DOI: 10.1364/ao.38.004145.
Y. He and B. J. Orr, Ringdown and cavity-enhanced absorption spectroscopy using a continuouswave tunable diode laser and a rapidly swept optical cavity, Chemical Physics Letters 319 (2000), 131 – 137, DOI: 10.1016/S0009-2614(00)00107-X.
C. V. Horii, M. S. Zahniser, D. D. Nelson, J. B. McManus and S. C. Wofsy, Nitric acid and nitrogen dioxide flux measurements: A new application of tunable diode laser absorption spectroscopy, Proceedings of SPIE – The International Society for Optical Engineering 3758 (1999), 152 – 161, DOI: 10.1117/12.366448.
V. L. Kasyutich, C. E. Canosa-Mas, C. Pfrang, S. Vaughan and R. P. Wayne, Off-axis continuouswave cavity-enhanced absorption spectroscopy of narrow-band and broadband absorbers using red diode lasers, Applied Physics B 75 (2002), 755 – 761, DOI: 10.1007/s00340-002-1032-3.
R. V. Martin, D. D. Parrish, T. B. Ryerson, Jr. D. K. Nicks, K. Chance, T. P. Kurosu, D. J. Jacob, E. D. Sturges, A. Fried and B. P. Wert, Evaluation of GOME satellite measurements of tropospheric NO2 and HCHO using regional data from aircraft campaigns in the southeastern United States, Journal of Geophysical Research 109(D24) (2004), 1 – 11, DOI: 10.1029/2004JD004869.
D. Meschede, Optics, Light and Lasers, Wiley-VCH (2007).
S. Noël, H. Bovensmann, J. P. Burrows, J. Frerick, K. V. Chance and A. H. P. Goede, Global atmospheric monitoring with SCIAMACHY, Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science 24 (1999), 427 – 434, DOI: 10.1016/S1464-1917(99)00066-5.
A. O’Keefe and D. A. G. Deacon, Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources, Review of Scientific Instruments 59 (1988), 2544 – 2554, DOI: 10.1063/1.1139895.
J. J. Scherer, J. B. Paul, H. Jiao and A. O’Keefe, Broadband ringdown spectral photography, Applied Optics 40 (2001), 6725 – 6732, DOI: 10.1364/ao.40.006725.
K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queissr, A. Czyzewski, T. Stacewicz and L. Wöste, Towards supercontinuum cavity ringdown spectroscopy, Applied Physics B 94 (2009), 396 – 373, DOI: 10.1007/s00340-008-3320-z.
P. Wang, A. Richter, M. Bruns, J. P. Burrows, W. Junkermann, K. P. Heue, T. Wagner, U. Platt and I. Pundt, Airborne multi-axis DOAS measurements of tropospheric SO2 plumes in the Po-valley, Italy, Atmospheric Chemistry and Physics 6 (2006), 329 – 338, DOI: 10.5194/acp-6-329-2006.
Weinhein (2007), Optoelectronics: Devices and Application, JacekWojtas (Ed. P. Pradeep, INTECH, Croatia (2019). , DOI: 10.5772/1036.
S.-C. Wu, L.-G. Qin, J. Jing, T. Yan, J. Lu and Z.-Y. Wang, Microwave-controlled optical double optomechanically induced transparency in a hybrid piezo-optomechanical cavity system, Physical Review A 98 (2018), 013807, DOI: 10.1103/PhysRevA.98.013807.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.