Quantum Optical Analysis of Atomic Density and Refractive Index Employing Cavity Enhanced Absorption Spectroscopy

Authors

DOI:

https://doi.org/10.26713/jamcnp.v8i2.1671

Keywords:

Quantum optical response, Cavity enhanced absorption spectroscopy, Fluctuation dynamics

Abstract

We propose a novel cavity enhanced absorption spectroscopic technique to sensitively measure atomic density and refractive index of a sample gas.We theoretically investigate the quantum optical response of a gas of atoms enclosed inside an optical cavity to a probe beam that passes through it. In particular, we study the intracavity spectra, the output spectra and the spectra of the fluctuations. We show that the response of the system is sensitive to small changes in the number of atoms and the refractive index.

Downloads

Download data is not yet available.

References

K. Atherton, G. Stewart and B. Culshaw, Gas detection by cavity ringdown absorption with a fiber optic amplifier loop, Proceedings SPIE 4577, Vibrational Spectroscopy-based Sensor Systems 4577 (2002), 25 – 31, DOI: 10.1117/12.455741.

Q. He, F. Badshah, T. Alharbi, L. Li and L. Yang, Normal-mode splitting in a linear and quadratic optomechanical system with an ensemble of two-level atoms, Journal of the Optical Society of America B 37 (2020), 148 – 156, DOI: 10.1364/JOSAB.37.000148.

C. N. Banwell and E. M. McCsah, Fundamentals of Molecular Spectroscopy, 4th edition, McGraw Hill Education (India) Pvt. Ltd., Chennai (2018).

K. W. Busch and M. A. Busch, Cavity-Ringdown Spectroscopy, ACS Symposium series, American Chemical Society, Washington DC (1999), DOI: 10.1021/bk-0720.

M. J. Collett and C. W. Gardiner, Squeezing of intracavity and traveling-wave light fields produced in parametric amplification, Physical Review A 30 (1984), 1386 – 1391, DOI: 10.1103/PhysRevA.30.1386.

A. Czy˙zewski, S. Chudzy´ nski, K. Ernst, G. Karasi ´ nski, L. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch and P. Rairoux, Cavity ring-down spectrography, Optics Communications 191 (2001), 271 – 275, DOI: 10.1016/S0030-4018(01)01134-8.

J.-F. Doussin, R. Dominique and C. Patrick, Multiple-pass cell for very-long-path infrared spectrometry, Applied Optics 38 (1999), 4145 – 4150, DOI: 10.1364/ao.38.004145.

Y. He and B. J. Orr, Ringdown and cavity-enhanced absorption spectroscopy using a continuouswave tunable diode laser and a rapidly swept optical cavity, Chemical Physics Letters 319 (2000), 131 – 137, DOI: 10.1016/S0009-2614(00)00107-X.

C. V. Horii, M. S. Zahniser, D. D. Nelson, J. B. McManus and S. C. Wofsy, Nitric acid and nitrogen dioxide flux measurements: A new application of tunable diode laser absorption spectroscopy, Proceedings of SPIE – The International Society for Optical Engineering 3758 (1999), 152 – 161, DOI: 10.1117/12.366448.

V. L. Kasyutich, C. E. Canosa-Mas, C. Pfrang, S. Vaughan and R. P. Wayne, Off-axis continuouswave cavity-enhanced absorption spectroscopy of narrow-band and broadband absorbers using red diode lasers, Applied Physics B 75 (2002), 755 – 761, DOI: 10.1007/s00340-002-1032-3.

R. V. Martin, D. D. Parrish, T. B. Ryerson, Jr. D. K. Nicks, K. Chance, T. P. Kurosu, D. J. Jacob, E. D. Sturges, A. Fried and B. P. Wert, Evaluation of GOME satellite measurements of tropospheric NO2 and HCHO using regional data from aircraft campaigns in the southeastern United States, Journal of Geophysical Research 109(D24) (2004), 1 – 11, DOI: 10.1029/2004JD004869.

D. Meschede, Optics, Light and Lasers, Wiley-VCH (2007).

S. Noël, H. Bovensmann, J. P. Burrows, J. Frerick, K. V. Chance and A. H. P. Goede, Global atmospheric monitoring with SCIAMACHY, Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science 24 (1999), 427 – 434, DOI: 10.1016/S1464-1917(99)00066-5.

A. O’Keefe and D. A. G. Deacon, Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources, Review of Scientific Instruments 59 (1988), 2544 – 2554, DOI: 10.1063/1.1139895.

J. J. Scherer, J. B. Paul, H. Jiao and A. O’Keefe, Broadband ringdown spectral photography, Applied Optics 40 (2001), 6725 – 6732, DOI: 10.1364/ao.40.006725.

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queissr, A. Czyzewski, T. Stacewicz and L. Wöste, Towards supercontinuum cavity ringdown spectroscopy, Applied Physics B 94 (2009), 396 – 373, DOI: 10.1007/s00340-008-3320-z.

P. Wang, A. Richter, M. Bruns, J. P. Burrows, W. Junkermann, K. P. Heue, T. Wagner, U. Platt and I. Pundt, Airborne multi-axis DOAS measurements of tropospheric SO2 plumes in the Po-valley, Italy, Atmospheric Chemistry and Physics 6 (2006), 329 – 338, DOI: 10.5194/acp-6-329-2006.

Weinhein (2007), Optoelectronics: Devices and Application, JacekWojtas (Ed. P. Pradeep, INTECH, Croatia (2019). , DOI: 10.5772/1036.

S.-C. Wu, L.-G. Qin, J. Jing, T. Yan, J. Lu and Z.-Y. Wang, Microwave-controlled optical double optomechanically induced transparency in a hybrid piezo-optomechanical cavity system, Physical Review A 98 (2018), 013807, DOI: 10.1103/PhysRevA.98.013807.

Downloads

Published

2021-10-31
CITATION

How to Cite

Yadav, S., Dudeja, S., & Bhattacherjee, A. B. (2021). Quantum Optical Analysis of Atomic Density and Refractive Index Employing Cavity Enhanced Absorption Spectroscopy. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 8(2), 157–165. https://doi.org/10.26713/jamcnp.v8i2.1671

Issue

Section

Research Article