Structural, Electronic, Mechanical, Linear and Nonlinear Optical, and Piezoelectric Properties of CsIO\(_3\) Materials from Ab Initio Study
DOI:
https://doi.org/10.26713/jamcnp.v8i2.1581Keywords:
Cesium iodates, Electronic structure, Mechanical properties, Linear and nonlinear optical properties, Piezoelectricity, DFTAbstract
In order to explore structure-properties relationship, structural, electronic, elastic, optical (linear and nonlinear), piezoelectric, and electro-optic properties of three cesium iodate CsIO\(_3\) polymorphs (monoclinic; M, rhombohedric; R, cubic; C) have been computed, discussed and compared by means of density functional theory DFT using the Tran and Blaha modified Becke-Johnson potential TB-mBJ and the Generalized Gradient Approximation GGA implemented in WIEN2K code. Also, the Pseudo-Potential Plane Waves method PP-PW and Local Density Approximation LDA embedded in ABINIT code were used. Calculated structural parameters are in agreement with experimental values with both methods and we found that GGA grades are the closest. Band gaps of M and R systems are both direct (4.00 and 5.13 eV respectively) which apparently increases with increasing structural symmetry. The centrosymmetric cubic system C has no apparent band gap and adopt a metallic behaviour. Noncentrosymmetric M and R phases show interesting piezoelectric and nonlinear optical properties with several similarities in electronic characteristics principally related to the pseudo-rhombohedric structure of the monoclinic M-CsIO\(_3\) system.
Downloads
References
R. Abt, C. Ambrosch-Draxl and P. Knoll, Optical response of high temperature superconductors by full potential LAPW band structure calculations, Physica B: Condensed Matter 194–196, Part 2 (1994), 1451 – 1452, DOI: 10.1016/0921-4526(94)91225-4.
C. Ambrosch-Draxl and J. O. Sofo, Linear optical properties of solids within the full-potential linearized augmented planewave method, Computer Physics Communications 175 (2006), 1 – 14, DOI: 10.1016/j.cpc.2006.03.005.
Y. An, Y. Zhong, T. Sun, H. Wang, Z. Hu, H. Liu, S. Liu, Y. Kong and J. Xu, Synthesis, structure and characterizations of M(IO3)2(HIO3) (M = Ca, Sr), new anhydrous alkaline earth metal bis-iodatehydrogeniodate compounds, Dalton Transactions 48 (2019), 13074 – 13080, DOI: 10.1039/C9DT02575H.
A. F. Armington and J. J. O’Connor, Gel growth of iodate crystals, Materials Research Bulletin 6(4) (1971), 653 – 658, DOI: 10.1016/0025-5408(71)90098-5.
A. Authier, International Tables for Crystallography, Volume D: Physical Properties of Crystals, Kluwer Academic Publishers (2003).
T. G. Balicheva and G. A. Petrova, Vibrational spectra of the IO3-ion in alkali iodates, Journal of Structural Chemistry 14 (1973), 424 – 430, DOI: 10.1007/BF00746993.
T. V. Barker, II.—Note on the iodates and periodates of the alkali metals and the ammonium radical, Iodates and periodates of the alkali metals, Journal of the Chemical Society, Transactions 93 (1908), 15 – 17, DOI: 10.1039/CT9089300015.
S. Baroni, S. de Gironcoli, A. Dal Corso and P. Giannozzi, Phonons and related properties of extended systems from density-functional perturbation theory, Reviews of Modern Physics 73 (2001), 515 – 567, DOI: 10.1103/RevModPhys.73.515.
S. Belhadj, B. Lagoun, M. B. Taouti, S. Khenchoul, A. Benghia and D. Benbertal, TB-mBJ calculation of structural, electronic and optical properties of two monovalent iodates AIO3 (A= Tl, ®-Rb), Chinese Journal of Physics 59 (2019), 10 – 20, DOI: 10.1016/j.cjph.2019.02.019.
E. L. Belokoneva, O. V. Reutova, O. V. Dimetrova and A. S. Volkov, Synthesis and crystal structure of a new iodate (Pb0.6Ba0.4)(Pb0.4Ba0.6)[IO3]4 analogous to Sr[IO3]2, Crystallography Reports 64 (2019), 590 – 593, DOI: 10.1134/S1063774519040047.
J. G. Bergman, G. D. Boyd and A. Ashkin, New nonlinear optical materials: metal oxides with nonbonded electrons, Journal of Applied Physics 40 (1969), 2860 – 2863, DOI: 10.1063/1.1658089.
P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran and L. D. Marks, WIEN2K An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, User’s Guide, WIEN2K_18.2, Vienna University of Technology, Austria (2018).
K. Chai and H. Li, Synthesis, characterization and theoretical calculation of a noncentrosymmetric compound, Cs0.92B0.92Si5.08O12, Journal of Physics and Chemistry of Solids 135 (2019), 109109, DOI: 10.1016/j.jpcs.2019.109109.
M. Fuchs and M. Scheffler, Ab initio pseudopotentials for electronic structure calculations of polyatomic systems using density-functional theory, Computer Physics Communications 119 (1999), 67 – 98, DOI: 10.1016/S0010-4655(98)00201-X.
P. Gong, F. Liang, L. Kang, X. Chen, J. Qin, Y. Wu and Z. Lin, Recent advances and future perspectives on infrared nonlinear optical metal halides, Coordination Chemistry Review 380 (2019), 83 – 102, DOI: 10.1016/j.ccr.2018.09.011.
X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty and D. C. Allan, First-principles computation of material properties: the ABINIT software project, Computational Materials Science 25 (2002), 478 – 492, DOI: 10.1016/S0927-0256(02)00325-7.
Z. Hebboul, C. Galez, D. Benbertal, S. Beauquis, Y. Mugnier, A. Benmakhlouf, M. Bouchenafa and D. Errandonea, Synthesis, characterization, and crystal structure determination of a new lithium zinc iodate polymorph LiZn(IO3)3, Crystals 9 (2019), 464 – 475, DOI: 10.3390/cryst9090464.
T. A. Hedge, A. Dutta, T. C. S. Girisun, M. Abith and G. Vinitha, Intensity tunable limiting behaviour of an organometallic cesium hydrogen tartrate single crystal, Journal of Materials Science: Materials in Electronics 30 (2019), 18885 – 18896, DOI: DOI: 10.1007/s10854-019-02245-5.
R. Hill, The elastic behaviour of crystalline aggregate, Proceedings of the Physical Society, Section A 65 (1952), 349 – 354, DOI: 10.1088/0370-1298/65/5/307.
Y. H. Kim, T. T. Tran, P. S. Halasyamani and K. M. Ok, Macroscopic polarity control with alkali metal cation size and coordination environment in a series of tin iodates, Inorganic Chemistry Frontiers 2 (2015), 361 – 368, DOI: 10.1039/C4QI00243A.
W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Physical Review Journals Archive 140 (1965), A1133 – A1138, DOI: 10.1103/PhysRev.140.A1133.
H. A. Kramers, The law dispersion and Bohr’s theory of spectra, Nature 113 (1924), 673 – 674, DOI: 10.1038/113673a0.
H. A. Kramers, The quantum theory of dispersion, Nature 114 (1924), 310 – 311, DOI: 10.1038/114310b0.
R. de L. Kronig, On the theory of dispersion of X-rays, Journal of the Optical Society of America 12 (1926), 547 – 550, DOI: 10.1364/JOSA.12.000547.
C. Li, P. Zhao, Z. Gao, Q. Wu, X. Tian, D. Ju, W. Lu, Y. Sun, D. Cui and X. Tao, Investigation into the optimized growth, anisotropic properties and theoretical calculations of the polar material Cs2TeW3O12, CrystEngComm 21 (2019), 2345 – 2354, DOI: 10.1039/C9CE00111E.
Y. Li, G. Han, H. Yu, H. Li, Z. Yang and S. Pan, Two polar molybdenum(VI) iodates(V) with large second-harmonic generation responses, Chemistry of Materials 31 (2019), 2992 – 3000, DOI: 10.1021/acs.chemmater.9b00521.
J. Lin, Q. Liu, Z. Yue, K. Diefenbach, L. Cheng, Y. Lin and J-Q. Wang, Expansion of the structural diversity of f-element bearing molybdate iodates: synthesis, structures, and optical properties, Dalton Transactions 48 (2019), 4823 – 4829, DOI: 10.1039/C8DT05120H.
C. H. M. Gillarvy and C. L. P. Van Eck, The crystal structure of sodium and ammonium iodate, Recueil des Travaux Chimiques des Pays-Bas 62(11) (1943), 729 – 735, DOI: 10.1002/recl.19430621105.
F.-F. Mao, C.-L. Hu, K. Chen and J.-G. Mao, A series of mixed-metal germanium iodates as second-order nonlinear optical materials, Chemistry of Materials 30 (2018), 2443 – 2452, DOI: 10.1021/acs.chemmater.8b00630.
F. Mouhat and F.-X. Couder, Necessary and sufficient elastic stability conditions in various crystal systems, Physical Review B 90 (2014), 224104, DOI: 10.1103/PhysRevB.90.224104.
R. E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure, Oxford University Press Inc., New York (2005).
G. Peng, C. Lin, D. Zhao, L. Cao, H. Fan, K. Chen and N. Ye, Sr[B(OH)4](IO3) and Li4Sr5[B12O22(OH)4](IO3)2: two unprecedented metal borate-iodates showing subtle balance of enlarged gap and birefringence, Chemical Communications 48 (2019), 11139 – 11142, DOI: 10.1039/C9CC05021C.
J. P. Perdew, S. Burke and M. Ernzerhof, Generalized gradient approximation mads sample, Physical Review Letters 77 (1996), 3865 – 3868, DOI: 10.1103/PhysRevLett.77.3865.
J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B 45 (1992), 13244 – 13249, DOI: 10.1103/PhysRevB.45.13244.
A. Pogu, P. W. Jaschin, K. B. R. Varma and K. Vidyasagar, Syntheses, structural variants and characterization of A2CdSn2S6 (A = Cs, Rb and K) compounds, Journal of Solid State Chemistry 277 (2019), 713 – 720, DOI: 10.1016/j.jssc.2019.07.024.
R. C. Powell, Symmetry, Group Theory and the Physical Properties of Crystals, Springer Science and Business Media, LLC (2010), DOI: 10.1007/978-1-4419-7598-0.
S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 (1954), 823 – 843, DOI: 10.1080/14786440808520496.
S. I. Ranganathan and M. Ostoja-Starzewski, Universal elastic anisotropy index, Physical Review Letters 101 (2008), 055504, DOI: 10.1103/PhysRevLett.101.055504.
A. H. Reshak and S. Auluck, LiMoO3(IO3), a novel molybdenyl iodate with strong second-order optical nonlinearity, Journal of Alloys and Compounds 660 (2016), 32 – 38, DOI: 10.1016/j.jallcom.2015.11.076.
A. Reuss, Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals (Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle), Zeitschrift für Angewandte Mathematik und Mechanik 9 (1929), 49 – 58, DOI: 10.1002/zamm.19290090104.
S. Saha and T. P. Sinha, Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3, Physical Review B 62 (2000), 8828 – 8834, DOI: 10.1103/PhysRevB.62.8828.
K. Schwarz, P. Blaha and G. K. H. Madsen, Electronic structure calculations of solid using the WIEN2K package for material sciences, Computer Physics Communications 147 (2002), 71 – 76, DOI: 10.1016/S0010-4655(02)00206-0.
J. C. Slater, Wave functions in a periodic potential, Physical Review Journals Archive 51 (1937), 846 – 851, DOI: 10.1103/PhysRev.51.846.
H. Song, N. Wang, Y. Li, Z. Lin, J. Yao and G. Zhang, SrI3O9H: a new alkaline earth metal iodate with two different anionic units using mild aqua-solution method, Solid State Sciences 97 (2019), 105982, DOI: 10.1016/j.solidstatesciences.2019.105982.
R. E. Sykora, S. M. McDaniel, D. M. Wells and T. E. Albrecht-Schmitt, Mixed-metal uranium(VI) iodates: hydrothermal syntheses, structures, and reactivity of Rb[UO2(CrO4)(IO3)(H2O)], A2[UO2(CrO4)(IO3)2(A = K, Rb, Cs), and K2[UO2(MoO4)(IO3)2], Inorganic Chemistry 41 (2002), 5126 – 5132, DOI: 10.1021/ic025773y.
R. E. Sykora, K. M. Ok, P. S. Halasyamani and T. E. Albrecht-Schmitt, Structural modulation of molybdenyl iodate architectures by alkali metal cations in AMoO3(IO3) (A = K, Rb, Cs): a facile route to new polar materials with large SHG responses, Journal of the American Chemical Society 124 (2002), 1951 – 1957, DOI: 10.1021/ja012190z.
R. E. Sykora, K. M. Ok, P. S. Halasyamani, O. M. Wells and T. E. Albercht-Schmitt, New one-dimensional vanadyl iodates: hydrothermal preparation, structures, and NLO properties of A[(VO2)2(IO3)3O2(A = NH4, Rb, Cs), Chemistry of Materials 14 (2002), 2741 – 2749, DOI: 10.1021/cm020021n.
R. E. Sykora, D. M. Wells and T. E. Albrecht-Schmitt, Hydrothermal synthesis and structure of a new one-dimensional, mixed-metal U(VI) iodate, Cs2[(UO2)(CrO4)(IO3)2], Inorganic Chemistry 41 (2002), 2304 – 2306, DOI: 10.1021/ic020055x.
C. Tang, X. Jiang, W. Yin, F. Chen, S. Guo, G. Song, L. Liu, H. Huang, M. Xia, Z. Lin and X. Wang, Rubidium cerium(IV) iodates with high UV-light-driven photocatalytic efficiency, ChemistrySelect 4 (2019), 7076 – 7081, DOI: 10.1002/slct.201901176.
H.-X. Tang, Y.-X. Zhang, C. Zhuo, R.-B. Fu, H. Lin, Z.-J. Ma and X.-T. Wu, A niobium oxyiodate sulfate with a strong second-harmonic-generation response built by rational multicomponent design, Angewandte Chemie International Edition 58(12) (2018), 3824 – 3828, DOI: 10.1002/anie.201813122.
R.-L. Tang, C.-L. Hu, B.-L. Wu, Z. Fang, Y. Chen and J.-G. Mao, Cs2Bi2O(Ge2O7) (CBGO): a larger SHG effect induced by synergistic polarization of BiO5 polyhedra and GeO4 tetrahedra, Angewandte Chemie International Edition 58 (2019), 15358-15361, DOI: 10.1002/anie.201909735.
R. F. Tinder, Tensor Properties of Solids, Part One: Equilibrium Tensor Properties of Solids, Synthesis Lectures on Engineering, Morgan & Claypool Publishers, 2007, 144 pages, DOI: 10.2200/S00057ED1V01Y200712ENG04.
F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semi-local exchange-correlation potential, Physical Review Letters 102 (2009), 226401, DOI: 10.1103/PhysRevLett.102.226401.
N. Troullier and J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Physical Review B 43 (1991), 1993 – 2006, DOI: 10.1103/PhysRevB.43.1993.
W. Voigt, Lehrbuch der Kristallphysik, Terubner Verlag, Leipzig (1928).
W. Chaoguo, The crystal structure of cesium iodate, Acta Chimica Sinica 43(3) (1985), 271 – 274, http://sioc-journal.cn/Jwk_hxxb/EN/Y1985/V43/I3/271.
L. Wheeler, S.I. Penfield, On some alkaline iodates (Über einige Alkali-jodate), Z. Anorg. Chem. 2(1) (1892), 437 – 447, DOI: 10.1002/zaac.18920020133.
C. Wu, L. Lin, X. Jiang, Z. Lin, Z. Huang, M. G. Humphrey, P. S. Halasyamani and C. Zhang, K5(W3O9F4)(IO3): An efficient mid-infrared nonlinear optical compound with high laser damage threshold, Chemistry of Materials 31(24) (2019), 10100 – 10108, DOI: 10.1021/acs.chemmater.9b03214.
Q. Wu, X. Liu, S. Xu, H. Pi and Y. Li, Five new silver rare-earth iodates, AgLn(IO3)4 (Ln = Pr, Sm, Dy, Er and Tm): synthesis, structures and properties, ChemistrySelect 4 (2049), 8709 – 8712, DOI: 10.1002/slct.201900926.
Z.-J. Wu, E.-J. Zhao, H.-P. Xiang, X.-F. Hao, X.-J. Liu and J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Physical Review B 76 (2007), 054115, DOI: 10.1103/PhysRevB.76.054115.
W. H. Zachariasen, Skrifter utgitt av Det Norske Videnskap-Akademi i Oslo, I. Mat.-Naturw. Klasse 4 (1928), 6 – 166.
M. Zhang, C. Hu, T. Abdudouwufu, Z. Yang and S. Pan, Functional materials design via structural regulation originated from ions introduction: a study case in cesium iodate system, Chemistry of Materials 30 (2018), 1136 – 1145, DOI: 10.1021/acs.chemmater.7b05252.
Q. Zhang, H. Mushahali, H. Duan, M.-H. Lee and Q. Jing, The linear and nonlinear optical reponse of CsGeX3 (X = Cl, Br, and I): the finite field and first principles investigation, Optik 179 (2019), 89 – 98, DOI: 10.1016/j.ijleo.2018.10.159.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.