Metal-insulator Transition in \({}^{70}\)Ge: Ga Semiconductor by Applying the Scaling Laws

Authors

  • Mohamed Errai Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir
  • Said Amrane Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir
  • C.-T. Liang Department of Physics, National Taiwan University, Taipei 106

DOI:

https://doi.org/10.26713/jamcnp.v7i3.1546

Keywords:

\({}^{70}\)Ge, Ga semiconductor, Scaling theory, Low temperature, Magnetic field, Metal-insulator transition, Metallic electrical conductivity, Transport properties, Localization

Abstract

In this article, we focus on the scaling theory of Abraham et al. without and with a magnetic field on the metallic side of the Metal-Insulator Transition (MIT) for the three-dimensional system \({}^{70}\)Ge: Ga, at very low temperatures. In particular, we have determined the zero temperature conductivity critical exponent when the MIT transition occurs with the variation of the impurity concentration \((\upsilon=0.503)\) and with the application of a magnetic field \((\upsilon=1.06)\). We have also estimated the critical magnetic field \(B_C\) that separates the metallic behavior \((B<B_C)\) from the variable-range hopping regime \((B>B_C)\). The data are for a \({}^{70}\)Ge: Ga sample prepared and reported by Itoh et al., Physical Review Letters 77 (1996), 4058 and Watanabe et al., Physical Review B 60 (1999), 15817.

Downloads

Download data is not yet available.

References

R. Abdia, A. El Kaaouachi, A. Nafidi, G. Biskupski and J. Hemine, Variable range hopping conductivity and negative magnetoresistance in n-type InP semiconductor, Solid-State Electronics 53 (2009), 469 – 472, DOI: 10.1016/j.sse.2009.02.002.

E. Abrahams, S.V. Kravchenko and M.P. Sarachik, Metallic behavior and related phenomena in two dimensions, Reviews of Modern Physics 73 (2001), 251 – 266, DOI: 10.1103/revmodphys.73.251.

C.J. Adkins, Conduction in granular metals-variable-range hopping in a Coulomb gap?, Journal of Physics: Condensed Matter 1 (1989), 1253 – 1259, DOI: 10.1088/0953-8984/1/7/009.

P.W. Anderson, E. Abrahams and T.V. Ramakrishnan, Possible explanation of nonlinear conductivity in thin-film metal wires, Physical Review Letters 43 (1979), 718 – 720, DOI: 10.1103/physrevlett.43.718.

G. Biskupski, A. El kaaouachi and A. Briggs, Critical behaviour of the conductivity in metallic n-type InP close to the metal-insulator transition, Journal of Physics: Condensed Matter 3 (1991), 8417 – 8424, DOI: 10.1088/0953-8984/3/43/008.

A. El Kaaouachi, R. Abdia, A. Nafidi and H. Sahsah, Positive magnetoresistance in the variable range hopping regime in CdSe, Physica E: Low-dimensional Systems and Nanostructures 32 (2006), 419 – 421, DOI: 10.1016/j.physe.2005.12.083.

A. Elkaaouachi, A. Nafidi and G. Biskupski, Analysis of the behaviour of magnitude m with magnetic field in corrective term "mT1/2” of the metallic electrical conductivity in n-type InP, Physica Status Solidi (b) 241 (2004), 155 – 162, DOI: 10.1002/pssb.200301910.

M. Errai, A. El Kaaouachi and H. El Idrissi, Hopping conduction in amorphous siliconchromium films at very low temperature, AIP Conference Proceedings 1574 (2014), 291 – 295, DOI: 10.1063/1.4860638.

M. Errai, A. El Kaaouachi and H. El Idrissi, Variable range hopping conduction in n-CdSe samples at very low temperature, Journal of Semiconductors 36 (2015), 122001, DOI: 10.1088/1674-4926/36/12/122001.

M. Errai, A. El Kaaouachi, A. Narjis, C.T. Liang, L. Limouny, S. Dlimi and A. Sybous, Crossover from Efros-Shklovskii to Mott variable range hopping in amorphous thin NixSi1¡x films, Chinese Journal of Physics 52 (2014), 251 – 261, DOI: 10.6122/CJP.52.251.

M. Errai, A. El Kaaouachi, H. El Idrissi and A. Chakhmane, Study of electrical properties in the insulating samples 70Ge: Ga p-type at very low temperatures, Chinese Journal of Physics 55 (2017), 2283 – 2290, DOI: 10.1016/j.cjph.2017.09.013.

F. Hellman, M.Q. Tran, A.E. Gebala, E.M. Wilcox and R.C. Dynes, Metal-insulator transition and giant negative magnetoresistance in amorphous magnetic rare earth silicon alloys, Physical Review Letters 77 (1996), 4652 – 4655, DOI: 10.1103/physrevlett.77.4652.

G. Hertel, D.J. Bishop, E.G. Spencer, J.M. Rowell and R.C. Dynes, Tunneling and transport measurements at the metal-insulator transition of amorphous Nb:Si, Physical Review Letters 50 (1983), 743 – 746, DOI: 10.1103/physrevlett.50.743.

Y.L. Huang, S.P. Chiu, Z.X. Zhu, Z.Q. Li and J.L. Lin, Variable-range-hopping conduction processes in oxygen deficient polycrystalline ZnO films, Journal of Applied Physics 107 (2010), 063715, DOI: 10.1063/1.3357376.

K.M. Itoh, E.E. Haller, J.W. Beeman, W.L. Hansen, J. Emes, L.A. Reichertz, E. Kreysa, T. Shutt, A. Cummings,W. Stockwell, B. Sadoulet, J. Muto, J.W. Farmer and V.I. Ozhogin, Hopping conduction and metal-insulator transition in isotopically enriched neutron-transmutation-doped 70Ge: Ga, Physical Review Letters 77 (1996), 4058 – 4061, DOI: 10.1103/physrevlett.77.4058.

K.M. Itoh, M. Watanabe and Y. Ootuka, Complete scaling analysis of the metal–insulator transition in Ge:Ga: effects of doping-compensation and magnetic field, Journal of the Physical Society of Japan 73 (2004), 173 – 183, DOI: 10.1143/jpsj.73.173.

Z. Li, L. Peng, J. Zhang, J. Li, Y. Zeng, Y. Luo, Z. Zhan, L. Meng, M. Zhou and W. Wu, Transition between Efros-Shklovskii and Mott variable-range hopping conduction in polycrystalline germanium thin films, Semiconductor Science and Technology 32 (2017), 035010, DOI: 10.1088/1361-6641/aa5390.

Y.C. Liao, T. Kopp, C. Richter, A. Rosch and J. Mannhart, Metal-insulator transition of the LaAlO3-SrTiO3 interface electron system, Physical Review B 83 (2011), 075402 – 075406, DOI: 10.1103/PhysRevB.83.075402.

A.P. Long and M. Pepper, The magnetic field induced metal-insulator transition in indium phosphide and silicon, Solid-State Electronics 28 (1985), 61 – 72, DOI: 10.1016/0038-1101(85)90211-4.

M.C. Maliepaard, M. Pepper, R. Newbury and G. Hill, Length scales at the metalinsulator transition in compensated GaAs, Physical Review Letters 61 (1988), 369 – 372, DOI: 10.1103/physrevlett.61.369.

R. Mansfield, M. Abdul-Gader and P. Fozooni, Magnetic tuning of the metal-insulator transition in n-InSb at very low temperatures, Solid-State Electronics 28 (1985), 109 – 112, , DOI: 10.1016/0038-1101(85)90217-5.

S. Miyasaka, T. Okuda and Y. Tokura, Critical Behavior of Metal-Insulator Transition in La1¡xSrxVO3, Physical Review Letters 85 (2000), 5388–5391, DOI: 10.1103/physrevlett.85.5388.

N.F. Mott, Conduction in non-crystalline systems IX. The minimum metallic conductivity, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 26 (1972), 1015 – 1026, DOI: 10.1080/14786437208226973.

A. Narjis, A. El Kaaouachi, L. Limouny, S. Dlimi, A. Sybous, J. Hemine, R. Abdia and G. Biskupski, Study of insulating electrical conductivity in hydrogenated amorphous siliconnickel alloys at very low temperature, Physica B: Condensed Matter 406 (2011), 4155 – 4158, DOI: 10.1016/j.physb.2011.08.021.

A. Narjis, A. El Kaaouachi, S. Dlimi, A. Sybous, L. Limouny and G. Biskupski, Metallic electrical conduction in hydrogenated amorphous silicon-nickel alloys, Chinese Journal of Physics 51 (2013), 593 – 605, DOI: 10.6122/CJP.51.593.

P.F. Newman and D.F. Holocomb, Metal-insulator transition in Si:As, Physical Review B 28 (1983), 638, DOI: 10.1103/PhysRevB.28.638.

R. Rentzsch, C. Reich, A.N. Ionov and V. Ginodman, Influence of disorder in compensation-doped germanium on the critical indices of the metal-insulator transition, Physics of the Solid State 41 (1999), 757 – 760, DOI: 10.1134/1.1130864.

M. Rohde and H. Micklitz, Indication of universal behavior of Hall conductivity near the metal-insulator transition in disordered systems, Physical Review B 36 (1987), 7572 – 7575, DOI: 10.1103/physrevb.36.7572.

R. Rosenbaum, A. Heines, A. Palevski, M. Karpovski, A. Gladkikh, M. Pilosof, A.J. Daneshvar, M.R. Graham, T. Wright, J.T. Nicholls, C.J. Adkins, M. Witcomb, V. Prozesky, W. Przybylowicz and R. Pretorius, Metallic transport properties of amorphous nickel-silicon films, Journal of Physics: Condensed Matter 9 (1997), 5395 – 5411, DOI: 10.1088/0953-8984/9/25/008.

H. Stupp, M. Hornung, M. Lakner, O. Madeland H.V. Löhneysen, Possible solution of the conductivity exponent puzzle for the metal-insulator transition in heavily doped uncompensated semiconductors, Physical Review Letters 71 (1993), 2634 – 2637, DOI: 10.1103/Phys-RevLett.71.2634.

W. Teizer, F. Hellman and R.C. Dynes, Density of states of Amorphous GdxSi1¡x at the metalinsulator transition, Physical Review Letters 85 (2000), 848 – 851, DOI: 10.1103/physrevlett.85.848.

G.A. Thomas, Y. Ootuka, S. Katsumoto, S. Kobayashi and W. Sasaki, Evidence for localization effects in compensated semiconductors, Physical Review B 25 (1982), 4288 – 4290, DOI: 10.1103/physrevb.25.4288.

Yu.K. Vekilov and Ya.M. Mukovskii, Variable range hopping conductivity in Manganites, Solid-state Communications 152 (2012), 1139 – 1141, DOI: 10.1016/j.ssc.2012.04.001.

S. Waffenschmidt, C. Pfleiderer and H.V. Löhneysen, Critical behavior of the conductivity of Si: P at the metal-insulator transition under uniaxial stress, Physical Review Letters 83 (1999), 3005 – 3008, DOI: 10.1103/physrevlett.83.3005.

M. Watanabe, K.M. Itoh, Y. Ootuka and E.E. Haller, Metal-insulator transition of isotopically enriched neutron-transmutation-doped 70Ge:Ga in magnetic fields, Physical Review B 60 (1999), 15817 – 15823, DOI: 10.1103/physrevb.60.15817.

F. Wegner, The mobility edge problem: continuous symmetry and a conjecture, Zeitschrift für Physik B Condensed Matter 35 (1979), 207 – 210, DOI: 10.1007/bf01319839.

T. Wojtowicz, T. Dietl, M. Sawicki, W. Plesiewicz and J. Jaroszy ´ nski, Metal-insulator transition in semimagnetic semiconductors, Physical Review Letters 56 (1986), 2419 – 2422, DOI: 10.1103/physrevlett.56.2419.

Downloads

Published

2020-12-31
CITATION

How to Cite

Errai, M., Amrane, S., & Liang, C.-T. (2020). Metal-insulator Transition in \({}^{70}\)Ge: Ga Semiconductor by Applying the Scaling Laws. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 7(3), 207–215. https://doi.org/10.26713/jamcnp.v7i3.1546

Issue

Section

Research Article