Metal-insulator Transition in \({}^{70}\)Ge: Ga Semiconductor by Applying the Scaling Laws
DOI:
https://doi.org/10.26713/jamcnp.v7i3.1546Keywords:
\({}^{70}\)Ge, Ga semiconductor, Scaling theory, Low temperature, Magnetic field, Metal-insulator transition, Metallic electrical conductivity, Transport properties, LocalizationAbstract
In this article, we focus on the scaling theory of Abraham et al. without and with a magnetic field on the metallic side of the Metal-Insulator Transition (MIT) for the three-dimensional system \({}^{70}\)Ge: Ga, at very low temperatures. In particular, we have determined the zero temperature conductivity critical exponent when the MIT transition occurs with the variation of the impurity concentration \((\upsilon=0.503)\) and with the application of a magnetic field \((\upsilon=1.06)\). We have also estimated the critical magnetic field \(B_C\) that separates the metallic behavior \((B<B_C)\) from the variable-range hopping regime \((B>B_C)\). The data are for a \({}^{70}\)Ge: Ga sample prepared and reported by Itoh et al., Physical Review Letters 77 (1996), 4058 and Watanabe et al., Physical Review B 60 (1999), 15817.Downloads
References
R. Abdia, A. El Kaaouachi, A. Nafidi, G. Biskupski and J. Hemine, Variable range hopping conductivity and negative magnetoresistance in n-type InP semiconductor, Solid-State Electronics 53 (2009), 469 – 472, DOI: 10.1016/j.sse.2009.02.002.
E. Abrahams, S.V. Kravchenko and M.P. Sarachik, Metallic behavior and related phenomena in two dimensions, Reviews of Modern Physics 73 (2001), 251 – 266, DOI: 10.1103/revmodphys.73.251.
C.J. Adkins, Conduction in granular metals-variable-range hopping in a Coulomb gap?, Journal of Physics: Condensed Matter 1 (1989), 1253 – 1259, DOI: 10.1088/0953-8984/1/7/009.
P.W. Anderson, E. Abrahams and T.V. Ramakrishnan, Possible explanation of nonlinear conductivity in thin-film metal wires, Physical Review Letters 43 (1979), 718 – 720, DOI: 10.1103/physrevlett.43.718.
G. Biskupski, A. El kaaouachi and A. Briggs, Critical behaviour of the conductivity in metallic n-type InP close to the metal-insulator transition, Journal of Physics: Condensed Matter 3 (1991), 8417 – 8424, DOI: 10.1088/0953-8984/3/43/008.
A. El Kaaouachi, R. Abdia, A. Nafidi and H. Sahsah, Positive magnetoresistance in the variable range hopping regime in CdSe, Physica E: Low-dimensional Systems and Nanostructures 32 (2006), 419 – 421, DOI: 10.1016/j.physe.2005.12.083.
A. Elkaaouachi, A. Nafidi and G. Biskupski, Analysis of the behaviour of magnitude m with magnetic field in corrective term "mT1/2” of the metallic electrical conductivity in n-type InP, Physica Status Solidi (b) 241 (2004), 155 – 162, DOI: 10.1002/pssb.200301910.
M. Errai, A. El Kaaouachi and H. El Idrissi, Hopping conduction in amorphous siliconchromium films at very low temperature, AIP Conference Proceedings 1574 (2014), 291 – 295, DOI: 10.1063/1.4860638.
M. Errai, A. El Kaaouachi and H. El Idrissi, Variable range hopping conduction in n-CdSe samples at very low temperature, Journal of Semiconductors 36 (2015), 122001, DOI: 10.1088/1674-4926/36/12/122001.
M. Errai, A. El Kaaouachi, A. Narjis, C.T. Liang, L. Limouny, S. Dlimi and A. Sybous, Crossover from Efros-Shklovskii to Mott variable range hopping in amorphous thin NixSi1¡x films, Chinese Journal of Physics 52 (2014), 251 – 261, DOI: 10.6122/CJP.52.251.
M. Errai, A. El Kaaouachi, H. El Idrissi and A. Chakhmane, Study of electrical properties in the insulating samples 70Ge: Ga p-type at very low temperatures, Chinese Journal of Physics 55 (2017), 2283 – 2290, DOI: 10.1016/j.cjph.2017.09.013.
F. Hellman, M.Q. Tran, A.E. Gebala, E.M. Wilcox and R.C. Dynes, Metal-insulator transition and giant negative magnetoresistance in amorphous magnetic rare earth silicon alloys, Physical Review Letters 77 (1996), 4652 – 4655, DOI: 10.1103/physrevlett.77.4652.
G. Hertel, D.J. Bishop, E.G. Spencer, J.M. Rowell and R.C. Dynes, Tunneling and transport measurements at the metal-insulator transition of amorphous Nb:Si, Physical Review Letters 50 (1983), 743 – 746, DOI: 10.1103/physrevlett.50.743.
Y.L. Huang, S.P. Chiu, Z.X. Zhu, Z.Q. Li and J.L. Lin, Variable-range-hopping conduction processes in oxygen deficient polycrystalline ZnO films, Journal of Applied Physics 107 (2010), 063715, DOI: 10.1063/1.3357376.
K.M. Itoh, E.E. Haller, J.W. Beeman, W.L. Hansen, J. Emes, L.A. Reichertz, E. Kreysa, T. Shutt, A. Cummings,W. Stockwell, B. Sadoulet, J. Muto, J.W. Farmer and V.I. Ozhogin, Hopping conduction and metal-insulator transition in isotopically enriched neutron-transmutation-doped 70Ge: Ga, Physical Review Letters 77 (1996), 4058 – 4061, DOI: 10.1103/physrevlett.77.4058.
K.M. Itoh, M. Watanabe and Y. Ootuka, Complete scaling analysis of the metal–insulator transition in Ge:Ga: effects of doping-compensation and magnetic field, Journal of the Physical Society of Japan 73 (2004), 173 – 183, DOI: 10.1143/jpsj.73.173.
Z. Li, L. Peng, J. Zhang, J. Li, Y. Zeng, Y. Luo, Z. Zhan, L. Meng, M. Zhou and W. Wu, Transition between Efros-Shklovskii and Mott variable-range hopping conduction in polycrystalline germanium thin films, Semiconductor Science and Technology 32 (2017), 035010, DOI: 10.1088/1361-6641/aa5390.
Y.C. Liao, T. Kopp, C. Richter, A. Rosch and J. Mannhart, Metal-insulator transition of the LaAlO3-SrTiO3 interface electron system, Physical Review B 83 (2011), 075402 – 075406, DOI: 10.1103/PhysRevB.83.075402.
A.P. Long and M. Pepper, The magnetic field induced metal-insulator transition in indium phosphide and silicon, Solid-State Electronics 28 (1985), 61 – 72, DOI: 10.1016/0038-1101(85)90211-4.
M.C. Maliepaard, M. Pepper, R. Newbury and G. Hill, Length scales at the metalinsulator transition in compensated GaAs, Physical Review Letters 61 (1988), 369 – 372, DOI: 10.1103/physrevlett.61.369.
R. Mansfield, M. Abdul-Gader and P. Fozooni, Magnetic tuning of the metal-insulator transition in n-InSb at very low temperatures, Solid-State Electronics 28 (1985), 109 – 112, , DOI: 10.1016/0038-1101(85)90217-5.
S. Miyasaka, T. Okuda and Y. Tokura, Critical Behavior of Metal-Insulator Transition in La1¡xSrxVO3, Physical Review Letters 85 (2000), 5388–5391, DOI: 10.1103/physrevlett.85.5388.
N.F. Mott, Conduction in non-crystalline systems IX. The minimum metallic conductivity, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 26 (1972), 1015 – 1026, DOI: 10.1080/14786437208226973.
A. Narjis, A. El Kaaouachi, L. Limouny, S. Dlimi, A. Sybous, J. Hemine, R. Abdia and G. Biskupski, Study of insulating electrical conductivity in hydrogenated amorphous siliconnickel alloys at very low temperature, Physica B: Condensed Matter 406 (2011), 4155 – 4158, DOI: 10.1016/j.physb.2011.08.021.
A. Narjis, A. El Kaaouachi, S. Dlimi, A. Sybous, L. Limouny and G. Biskupski, Metallic electrical conduction in hydrogenated amorphous silicon-nickel alloys, Chinese Journal of Physics 51 (2013), 593 – 605, DOI: 10.6122/CJP.51.593.
P.F. Newman and D.F. Holocomb, Metal-insulator transition in Si:As, Physical Review B 28 (1983), 638, DOI: 10.1103/PhysRevB.28.638.
R. Rentzsch, C. Reich, A.N. Ionov and V. Ginodman, Influence of disorder in compensation-doped germanium on the critical indices of the metal-insulator transition, Physics of the Solid State 41 (1999), 757 – 760, DOI: 10.1134/1.1130864.
M. Rohde and H. Micklitz, Indication of universal behavior of Hall conductivity near the metal-insulator transition in disordered systems, Physical Review B 36 (1987), 7572 – 7575, DOI: 10.1103/physrevb.36.7572.
R. Rosenbaum, A. Heines, A. Palevski, M. Karpovski, A. Gladkikh, M. Pilosof, A.J. Daneshvar, M.R. Graham, T. Wright, J.T. Nicholls, C.J. Adkins, M. Witcomb, V. Prozesky, W. Przybylowicz and R. Pretorius, Metallic transport properties of amorphous nickel-silicon films, Journal of Physics: Condensed Matter 9 (1997), 5395 – 5411, DOI: 10.1088/0953-8984/9/25/008.
H. Stupp, M. Hornung, M. Lakner, O. Madeland H.V. Löhneysen, Possible solution of the conductivity exponent puzzle for the metal-insulator transition in heavily doped uncompensated semiconductors, Physical Review Letters 71 (1993), 2634 – 2637, DOI: 10.1103/Phys-RevLett.71.2634.
W. Teizer, F. Hellman and R.C. Dynes, Density of states of Amorphous GdxSi1¡x at the metalinsulator transition, Physical Review Letters 85 (2000), 848 – 851, DOI: 10.1103/physrevlett.85.848.
G.A. Thomas, Y. Ootuka, S. Katsumoto, S. Kobayashi and W. Sasaki, Evidence for localization effects in compensated semiconductors, Physical Review B 25 (1982), 4288 – 4290, DOI: 10.1103/physrevb.25.4288.
Yu.K. Vekilov and Ya.M. Mukovskii, Variable range hopping conductivity in Manganites, Solid-state Communications 152 (2012), 1139 – 1141, DOI: 10.1016/j.ssc.2012.04.001.
S. Waffenschmidt, C. Pfleiderer and H.V. Löhneysen, Critical behavior of the conductivity of Si: P at the metal-insulator transition under uniaxial stress, Physical Review Letters 83 (1999), 3005 – 3008, DOI: 10.1103/physrevlett.83.3005.
M. Watanabe, K.M. Itoh, Y. Ootuka and E.E. Haller, Metal-insulator transition of isotopically enriched neutron-transmutation-doped 70Ge:Ga in magnetic fields, Physical Review B 60 (1999), 15817 – 15823, DOI: 10.1103/physrevb.60.15817.
F. Wegner, The mobility edge problem: continuous symmetry and a conjecture, Zeitschrift für Physik B Condensed Matter 35 (1979), 207 – 210, DOI: 10.1007/bf01319839.
T. Wojtowicz, T. Dietl, M. Sawicki, W. Plesiewicz and J. Jaroszy ´ nski, Metal-insulator transition in semimagnetic semiconductors, Physical Review Letters 56 (1986), 2419 – 2422, DOI: 10.1103/physrevlett.56.2419.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.