An Investigation of Optical Gain of Nanomaterial AlGaAsIn/InP under CTLSs in Optical Communications
DOI:
https://doi.org/10.26713/jamcnp.v7i3.1544Keywords:
Modal type gain intensity, Optical type gain intensity, CTLSs, AlGaAsIn, InPAbstract
The fundamental aim of this research paper has been to provide a critical role in the study of an investigation on optical gain enhancement of quaternary nanomaterial AlGaAsIn/InP under the CTLSs (Compressive Type Longitudinal Strains) in optical type telecommunication systems.
Downloads
References
P.A. Alvi, P. Lal, R. Yadav, S. Dixit and S. Dalela, Modal gain characteristics of GRINInGaAlAs/InP lasing nano-heterostructures, Superlattices and Microstructures 61 (2013), 1 – 12, DOI: 10.1016/j.spmi.2013.05.019.
P.A. Alvi, P. Lal, S. Dalela and M.J. Siddiqui, An extensive study on simple and GRIN SCH based In0.71Ga0.21Al0.08As/InP lasing heterostructure, Physica Scripta 85 (2012), 035402, DOI: 10.1088/0031-8949/85/03/035402.
P.A. Alvi, Strain-induced non-linear optical properties of straddling-type indium gallium aluminum arsenic/indium phosphide nanoscale-heterostructures, Materials Science in Semiconductor Processing 31 (2015), 106 – 115, DOI: 10.1016/j.mssp.2014.11.016.
W.W. Chow, Z. Zhang, J.C. Norman, S. Liu and J.E. Bowers, On quantum-dot lasing at gain peak with linewidth enhancement factor ®H í† 0, APL Photonics 5 (2020), 026101, DOI: 10.1063/1.5133075.
S.L. Chuang, Physics of Optoelectronic Devices, 2nd edition, Wiley, New York (2009), URL: https://www.wiley.com/en-us/Physics+of+Photonic+Devices%2C+2nd+Edition-p-9780470293195.
J.J. Geuchies, B. Brynjarsson, G. Grimaldi, S. Gudjonsdottir, W. van der Stam, W.H. Evers and A.J. Houtepen, Quantitative electrochemical control over optical gain in quantum-dot solids, ACS Nano 15 (2021), 377 – 386, DOI: 10.1021/acsnano.0c07365.
C. Henry, Theory of linewidth of semiconductor lasers, IEEE Journal of Quantum Electronics 18 (1982), 259 – 264, DOI: 10.1109/JQE.1982.1071522.
L. Ya. Karachinsky, I.I. Novikov, A.V. Babichev, A.G. Gladyshev, E.S. Kolodeznyi, S.S. Rochas, A.S. Kurochkin, Yu.K. Bobretsova, A.A. Klimov, D.V. Denisov, K.O. Voropaev, A.S. Ionov, V.E. Bougrov and A.Yu. Egorov, Optical gain in laser heterostructures with an active area based on an InGaAs/InGaAlAsSuperlattice, Optics and Spectroscopy 127(6) (2019), 1053 – 1056, DOI: 10.1134/s0030400x19120099.
P. Lal and P.A. Alvi, Strain induced gain optimization in type-I InGaAlAs/InP nanoscaleheterostructure, AIP Conference Proceedings 2220 (2020), 020060, DOI: 10.1063/5.0001124.
P. Lal, G. Bhardwaj, S. Kattayat and P.A. Alvi, Tunable anti-guiding factor and optical gain of InGaAlAs/InP nano-heterostructure under internal strain, Journal of Nano- and Electronic Physics 12(2) (2020), 02002 (3pp), DOI: 10.21272/jnep.12(2).02002.
P. Lal, R. Yadav, M. Sharma, F. Rahman, S. Dalela and P.A. Alvi, Qualitative analysis of gain spectra of InGaAlAs/InP lasing nano-heterostructure, International Journal of Modern Physics B 28(29) (2014), 1450206, DOI: 10.1142/S0217979214502063.
P. Lal, S. Gupta and P.A. Alvi, G-J study for GRIN InGaAlAs/InP lasing nano-heterostructures, AIP Conference Proceedings 1536 (2013), 53 – 54, DOI: 10.1063/1.4810096.
J. Piprek, J.K. White and A.J.S. Thorpe, What limits the maximum output power of longwavelength AlGaInAs/InP laser diodes?, IEEE Journal of Quantum Electronics 38(9) (2002), DOI: 10.1109/JQE.2002.802441.
A. Ramam and S.J. Chua, Features of InGaAlAs/InP heterostructures, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 16 (1998), 565, DOI: 10.1116/1.589864.
D.A. Rybalko, I.S. Polukhin, Y.V. Solov'ev, G.A. Mikhailovskiy, M.A. Odnoblyudov, A.E. Gubenko, D.A. Livshits, A.N. Firsov, A.N. Kirsyaev and A.A. Efremov, Model of mode-locked quantumwell semiconductor laser based on InGaAs/InGaAlAs/InP heterostructure, Journal of Physics: Conference Series 741 (2016), 012079, DOI: 10.1088/1742-6596/741/1/012079.
S.R. Selmic, T.-M. Chou, J.P. Sih, J.B. Kirk, A. Mantie, J.K. Butler, D. Bour and G.A. Evans, Design and characterization of 1.3-/spl mu/m AlGaInAs-InP multiple-quantum-well lasers, IEEE Journal on Selected Topics in Quantum Electronics 7(2) (2001), 340 – 349, DOI: 10.1109/2944.954148.
H. Vahala and A. Yariv, Semiclassical theory of noise in semiconductor lasers – Part II, IEEE Journal of Quantum Electronics 19 (1983), 1102 – 1109, DOI: 10.1109/JQE.1983.1071984.
S. Yoshitomi, K. Yamanaka, Y. Goto, Y. Yokomura, N. Nishiyama and S. Arai, Continuous-wave operation of a 1.3 ¹m wavelength npnAlGaInAs/InP transistor laser up to 90 ±C, Japanese Journal of Applied Physics 59 (2020), 042003, DOI: 10.35848/1347-4065/ab7ef2.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.