Lattice Boltzmann Simulation of MHD Rayleigh- Bénard Natural Convection in a Cavity Filled With a Ferrofluid

Authors

  • Khalid Chtaibi LMFE, Department of Physics, Cadi Ayyad University, Faculty of Sciences Semlalia, B.P. 2390, Marrakesh
  • Mohammed Hasnaoui LMFE, Department of Physics, Cadi Ayyad University, Faculty of Sciences Semlalia, B.P. 2390, Marrakesh
  • Youssef Dahani LMFE, Department of Physics, Cadi Ayyad University, Faculty of Sciences Semlalia, B.P. 2390, Marrakesh
  • Abdelkhalek Amahmid LMFE, Department of Physics, Cadi Ayyad University, Faculty of Sciences Semlalia, B.P. 2390, Marrakesh

DOI:

https://doi.org/10.26713/jamcnp.v7i3.1540

Keywords:

Magnetohydrodynamics, Rayleigh-Bénard Convection, Ferrofluid Fe\(_3\)O\(_4\)-H\(_2\)O

Abstract

In this study, we examine the effect of a uniform external magnetic field on Rayleigh-Bénard convection in a square cavity filled with a ferrofluid. Numerical simulations are based on the Lattice Boltzmann method. The effects of physical parameters, which are the Rayleigh number, the Hartmann number, and the angle of inclination of the magnetic field are studied. The results obtained are graphically illustrated and discussed for a volume fraction of four percent. These results show that the rate of heat transfer decreases by increasing the Hartmann number. For high Rayleigh number values, the maximum heat transfer rate was obtained for a specific Hartmann number when the Lorentz and buoyancy forces are perpendicular

Downloads

Download data is not yet available.

References

A. Baí¯ri, E. Zarco-Pernia and J.M. Garcí­a De Marí­a, A review on natural convection in enclosures for engineering applications, the particular case of the parallelogrammic diode cavity, Applied Thermal Engineering 63 (2014), 304 – 322, DOI: 10.1016/j.applthermaleng.2013.10.065.

A.P.L. Bhatnagar, E.P. Gross and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Physical Review 94 (1954), 511 – 525, DOI: 10.1103/PhysRev.94.511.

H.C. Brinkman, The viscosity of concentrated suspensions and solutions, The Journal Chemical Physics 20 (1952), 571, DOI: 10.1063/1.1700493.

S.U.S. Choi and J.A. Eastman, Enhancing Thermal Conductivity of Fluids With Nanoparticles, ASME-Publications-Fed 231 (1995).

A.S. Dogonchi and Hashim, Heat transfer by natural convection of Fe3O4-water nanofluid in an annulus between a wavy circular cylinder and a rhombus, International Journal of Heat and Mass Transfer 130 (2019), 320 – 332, DOI: 10.1016/j.ijheatmasstransfer.2018.10.086.

O. Ghaffarpasand, Numerical study of MHD natural convection inside a sinusoidally heated lid-driven cavity filled with Fe3O4-water nanofluid in the presence of Joule heating, Applied Mathematical Modelling 40 (2016), 9165 – 9182, DOI: 10.1016/j.apm.2016.05.038.

R.L. Hamilton and O.K. Crosser, Thermal conductivity of heterogeneous two-component systems, Industrial and Engineering Chemistry Fundamentals 1 (1962), 187 – 191, DOI: 10.1021/i160003a005.

C.J. Ho, W.K. Liu, Y.S. Chang and C.C. Lin, Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study, International Journal of Thermal Sciences 49 (2010), 1345 – 1353, DOI: 10.1016/j.ijthermalsci.2010.02.013.

K. Khanafer, K. Vafai and M. Lightstone, Buoyancy-driven heat transfer enhancement in a twodimensional enclosure utilizing nanofluids, International Journal of Heat and Mass Transfer 46 (2003), 3639 – 3653, DOI: 10.1016/S0017-9310(03)00156-X.

A. Mahmoudi, I. Mejri, M.A. Abbassi and A. Omri, Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with linear temperature distribution, Powder Technology 256 (2014), 257 – 271, DOI: 10.1016/j.powtec.2014.02.032.

N. Ouertatani, N.B. Cheikh, B.B. Beya and T. Lili, Numerical simulation of two-dimensional Rayleigh-Bénard convection in an enclosure, Comptes Rendus Mécanique 336 (2008), 464 – 470, DOI: 10.1016/j.crme.2008.02.004.

J. Philip, P.D. Shima and B. Raj, Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures, Applied Physics Letters 91 (2007), 203108, DOI: 10.1063/1.2812699.

N. Rahimpour and M.K. Moraveji, Free convection of water ” Fe3O4 nanofluid in an inclined cavity subjected to a magnetic field: CFD modeling, sensitivity analysis, Advanced Powder Technology 28 (2017), 1573 – 1584, DOI: 10.1016/j.apt.2017.03.029.

M. Sathiyamoorthy and A. Chamkha, Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side wall(s), International Journal of Thermal Sciences 49 (2010), 1856 – 1865, DOI: 10.1016/j.ijthermalsci.2010.04.014.

P.D. Shima, J. Philip and B. Raj, Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids, Applied Physics Letters 94 (2009), 223101, DOI: 10.1063/1.3147855.

O. Turan, N. Chakraborty and R.J. Poole, Laminar Rayleigh-Bénard convection of yield stress fluids in a square enclosure, Journal of Non-Newtonian Fluid Mechanics 171-172 (2012), 83 – 96, DOI: 10.1016/j.jnnfm.2012.01.006.

B.L. Xu, Q. Wang, Z.H. Wan, R. Yan and D.J. Sun, Heat transport enhancement and scaling law transition in two-dimensional Rayleigh-Bénard convection with rectangulartype roughness, International Journal of Heat and Mass Transfer 121 (2018), 872 – 883, DOI: 10.1016/j.ijheatmasstransfer.2018.01.051.

Downloads

Published

2020-12-31
CITATION

How to Cite

Chtaibi, K., Hasnaoui, M., Dahani, Y., & Amahmid, A. (2020). Lattice Boltzmann Simulation of MHD Rayleigh- Bénard Natural Convection in a Cavity Filled With a Ferrofluid. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 7(3), 133–144. https://doi.org/10.26713/jamcnp.v7i3.1540

Issue

Section

Research Article