Cascaded Förster Resonance Energy Transfer and Role of Relay Dyes

Authors

  • C. K. R. Namboodiri Department of Education in Science & Mathematics, Regional Institute of Education Mysore, Mysore 570006; Department of Physics, Indian Institute of Technology Madras, Chennai 600036
  • Prem B. Bisht Department of Physics, Indian Institute of Technology Madras, Chennai 600036
  • V. R. Dantham Department of Physics, Indian Institute of Technology Madras, Chennai 600036; Department of Physics, Indian Institute of Technology Patna, Patna 800013

DOI:

https://doi.org/10.26713/jamcnp.v8i1.1491

Keywords:

Cascaded Förster resonance energy transfer, Relay dye, Transfer efficiency

Abstract

The effect of introducing a relay dye on the energy transfer efficiency in a new donor-acceptor system has been studied. The values of the critical transfer distance, the reduced concentration, and the energy transfer efficiency of the cascaded system (consisting of three dyesdonor-relay dye-acceptor) are compared with that of the two dye system. Experimentally, it has been observed that the presence of a relay dye increases the transfer efficiency from the donor to the acceptor.

Downloads

Download data is not yet available.

References

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang and B. P. Wittmershaus, Optimized excitation energy transfer in a three-dye luminescent solar concentrator, Solar Energy Materials and Solar Cells 91 (2007), 67 – 75, DOI: 10.1016/j.solmat.2006.07.011.

C. Beghetto, C. Renken, O. Eriksson, G. Jori, P. Bernardi and F. Ricchelli, Implications of the generation of reactive oxygen species by photoactivated calcein for mitochondrial studies, European Journal of Biochemistry 267 (2000), 5585 – 5592, DOI: 10.1046/j.1432-1327.2000.01625.x.

P. B. Bisht, H. B. Tripathi and D. D. Pant, Reinvestigation of the photophysics of the 2-naphtholamine hydrogen-bonded system. I, Chemical Physics 147 (1990), 173 – 187, DOI: 10.1016/0301-0104(90)85033-S.

C. Botta, P. Betti and M. Pasini, Organic nanostructured host-guest materials for luminescent solar concentrators, Journal of Materials Chemistry A 1 (2013), 510 – 514, DOI: 10.1039/C2TA00632D.

A. M. Dennis and G. Bao, Quantum dot-fluorescent protein pair as ratiometric pH sensor, in: Proceedings Volume 7575, Colloidal Quantum Dots for Biomedical Applications V, SPIE BiOS, 2010, San Francisco, California, United States, 75750C (2010), DOI: 10.1117/12.842640.

Th. Förster, 10th Spiers Memorial Lecture. Transfer mechanics of Electronic Excitation, Discussions of the Faraday Society 27 (1959), 7 – 17, DOI: 10.1039/df9592700007.

L. Feng, C. Tong, Y. He, B. Liu, C. Wang, J. Sha and C. Lü, A novel FRET-based fluorescent chemosensor of ¯-cyclodextrin derivative for TNT detection in aqueous solution, Journal of Luminescence 146 (2014), 502 – 507, DOI: 10.1016/j.jlumin.2013.10.039.

W. Görtz and H. H. Perkampus, Bestimmung absoluter Fluorescenzquantenausbeuten mittels der Photo-Akustik-Spektroskopie, Fresenius' Zeitschrift für analytische Chemie 316 (1983), 180 – 185, URL: https://link.springer.com/article/10.1007/BF00488183.

S. Ghosh, S. Mandal, C. Banerjee, V. G. Rao and N. Sarkar, Photophysics of 3,30-Diethyloxadicarbocyanine Iodide (DODCI) in ionic liquid Micelle and binary mixtures of ionic liquids: effect of confinement and viscosity on photoisomerization rate, The Journal of Physical Chemistry B 116 (2012), 9482 – 9491, DOI: 10.1021/jp305095n.

A. Godavarty, E. M. Sevick-Muraca and M. J. Eppstein, Three-dimensional fluorescence lifetime tomography, Medical Physics 32(4) (2005), 992 – 1000, DOI: 10.1118/1.1861160.

N. Hildebrandt, K. D. Wegner and W. R. Algar, Luminescent terbium complexes: Superior Förster resonance energy transfer donors for flexible and sensitive multiplexed biosensing, Coordination Chemistry Reviews 273–274 (2014), 125 – 138, DOI: 10.1016/j.ccr.2014.01.020.

S. Hohng, S. Lee, J. Lee and M. H. Jo, Maximizing information content of single-molecule FRET experiments: multi-color FRET and FRET combined with force or torque, Chemical Society Reviews 43 (2014), 1007 – 1013, DOI: 10.1039/C3CS60184F.

K. C. Jena and P. B. Bisht, Excitation energy transfer in a weakly coupled system: Studies with time-resolved fluorescence microscopy and laser induced transient grating techniques, Chemical Physics 314 (2005), 179 – 188, DOI: 10.1016/j.chemphys.2005.02.009.

D. Ji, W. Lv, Z. Huang, A. Xia, M. Xu, W. Ma, H. Mi and T. Ogawa, Fluorescence resonance energy transfer imaging of CFP/YFP labeled NDH in cyanobacterium cell, Journal of Luminescence, 122–123 (2007), 463 – 466, DOI: 10.1016/j.jlumin.2006.01.207.

Y. Jia, D. S. Talaga, W. L. Lau, H. S. M. Lu, W. F. DeGrado and R. M. Hochstrasser, Folding dynamics of single GCN-4 peptides by fluorescence resonant energy transfer confocal microscopy, Chemical Physics 247 (1999), 69 – 83, DOI: 10.1016/S0301-0104(99)00127-5.

A. K. Kenworthy, Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy, Methods 24 (2001), 289 – 296, DOI: 10.1006/meth.2001.1189.

T. Kobayashi, Y. Takagi, H. Kandori, K. Kemnitz and K. Yoshihara, Femtosecond intermolecular electron transfer in diffusionless, weakly polar systems: nile blue in aniline and N,N-dimethylaniline, Chemical Physics Letters 180 (1991), 416 – 422, DOI: 10.1016/0009-2614(91)85142-J.

D. Llères, S. Swift and A. I. Lamond, Detecting protein-protein interactions in vivo with FRET using Multiphoton Fluorescence Lifetime Imaging Microscopy (FLIM), Current Protocols in Cytometry 42(1) (2007), 12.10.1 – 12.10.19 DOI: 10.1002/0471142956.cy1210s42.

J. Lyklema, Fundamentals of Interface and Colloid Science: Liquid-Fluid Interfaces, 1st edition, Elsevier Science – Academic Press (2000), URL: https://www.elsevier.com/books/fundamentals-of-interface-and-colloid-science/lyklema/978-0-12-460523-7.

S. Mahanta, R. B. Singh, A. Bagchi, D. Nath and N. Guchhait, Study of protein-probe complexation equilibria and protein-surfactant interaction using charge transfer fluorescence probe methyl ester of N,N-dimethylamino naphthyl acrylic acid, Journal of Luminescence 130 (2010), 917 – 926, DOI: 10.1016/j.jlumin.2010.01.011.

A. M. Mooney, K. E.Warner, P. J. Fontecchio, Y.-Z. Zhang and B. P.Wittmershaus, Photodegradation in multiple-dye luminescent solar concentrators, Journal of Luminescence 143 (2013), 469 – 472, DOI: 10.1016/j.jlumin.2013.05.029.

K. Rurack and M. Spieles, Fluorescence quantum yields of a series of red and near-infrared dyes emitting at 600-1000 nm, Analytical Chemistry 83 (2011), 1232 – 1242, DOI: 10.1021/ac101329h.

P. Sandeep and P. B. Bisht, Concentration sensing based on radiative rate enhancement from a single microcavity, Chemical Physics Letters 415 (2005), 15 – 19, DOI: 10.1016/j.cplett.2005.08.047.

J. Schäfer, R. Menzel, D. WeiíŸ, B. Dietzek, R. Beckert and J. Popp, Classification of novel thiazole compounds for sensitizing Ru–polypyridine complexes for artificial light harvesting, Journal of Luminescence 131 (2011), 1149 – 1153, DOI: 10.1016/j.jlumin.2011.02.021.

B. Schuler and W. A. Eaton, Protein folding studied by single-molecule FRET, Current Opinion in Structural Biology 18 (2008), 16 – 26, DOI: 10.1016/j.sbi.2007.12.003.

R. B. Sekar and A. Periasamy, Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations, Journal of Cell Biology 160 (2003), 629 – 633, DOI: 10.1083/jcb.200210140.

U. Tripathy and P. B. Bisht, Effect of donor-acceptor interaction strength on excitation energy migration and diffusion at high donor concentrations, The Journal of Chemical Physics 125 (2006), 144502 – 144508, DOI: 10.1063/1.2354152.

U. Tripathy, P. B. Bisht and K. K. Pandey, Study of excitation energy migration and transfer in 3,30-dimethyloxacarbocyanine iodide (DMOCI) and o-(6-diethylamino-3-diethylimino-3H-xanthen-9-yl) benzoic acid (RB) in thin films of polyvinyl alcohol, Chemical Physics 299 (2004), 105 – 112, DOI: 10.1016/j.chemphys.2003.12.016.

B. Valeur and M. N. Berberan-Santos, Molecular Fluorescence: Principles and Applications, 2nd edition, Wiley (2012), URL: https://www.wiley.com/en-us/Molecular+Fluorescence%3A+Principles+and+Applications%2C+2nd+Edition-p-9783527328376.

B. W. van der Meer, D. M. van der Meer and S. S. Vogel, Optimizing the orientation factor kappa-squared for more accurate FRET measurements, Chapter 4, in: FRET – Förster Resonance Energy Transfer, Wiley-VCH Verlag GmbH & Co. KGaA (2013), pp. 63 – 104, DOI: 10.1002/9783527656028.ch04.

J. Xia, M. Lin, X. Zuo, S. Su, L.Wang,W. Huang, C. Fan and Q. Huang, Metal ion-mediated assembly of DNA nanostructures for cascade fluorescence resonance energy transfer-based fingerprint analysis, Analytical Chemistry 86 (2014), 7084 – 7087, DOI: 10.1021/ac5015436.

A. Zastrow, K. Heidler, R. E. Sah, V. Wittwer and A. Goetzberger, On the conversion of solar radiation with fluorescent planar concentrators (FPCs), in: 3rd Photovoltaic Solar Energy Conference, 1981, pp. 413 – 417, DOI: 10.1007/978-94-009-8423-3_60.

A. Zastrow, Physics and applications of fluorescent concentrators: a review, in: Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII, Proceedings of the SPIE, 2255 (1994), 534 – 547, DOI: 10.1117/12.185397.

Downloads

Published

2021-04-30
CITATION

How to Cite

Namboodiri, C. K. R., Bisht, P. B., & Dantham, V. R. (2021). Cascaded Förster Resonance Energy Transfer and Role of Relay Dyes. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 8(1), 1–14. https://doi.org/10.26713/jamcnp.v8i1.1491

Issue

Section

Research Article