The Effect of Manganese(Mn) Substitutional Doping on Structural, Electronic and Magnetic Properties of Pristine Hexagonal Graphene: Using Spin Polarized Density Functional Theory

Authors

  • Mitiku Yimer Anagaw Department of Physics, College of Natural Sciences, Arba Minch University, Arba Minch,
  • Sintayehu Mekonnen Hailemariam Department of Physics, College of Natural Sciences, Arba Minch University, Arba Minch

DOI:

https://doi.org/10.26713/jamcnp.v7i2.1422

Keywords:

Pristine graphene, Electronic structure, Density functional theory, Magnetic interaction

Abstract

Graphene, a monolayer of carbon atoms packed in a hexagonal structure, has become one of the most remarkable materials available to condensed matter physics and material science(engineering) today due to its nobel structural and electronic properties. In this paper, the structural, electronic, and magnetic properties of Mn-doped monolayer pristine graphene is studied using spin-polarized density functional theory (DFT). The results show that the substitution of Mn dopant atom at the C sites is energetically favorable and the dopants are strongly hybridized with neighboring C-atoms of graphene. The total density of state (TDOS), partial density of state (PDOS), and energy band structure calculations results revel that the electronic and magnetic properties of pristine graphene is being affected in the presence of Mn dopants. Thus, in the presence of Mn dopants nonmagnetic(paramagnetic) and metallic state of pristine graphene is turned to half-metallic with the ferromagnetic ground state. Based on result, we recommend that Mn doped graphene is Nobel material for spintronics and magnetic information storage applications.

Downloads

Download data is not yet available.

References

H. Malekpour, K.-H. Chang, J.-C. Chen, C.-Y. Lu, D. L. Nika, K. S. Novoselov and A. A. Balandin, Thermal conductivity of graphene laminate, Nano Letters 14 (9) (2014), 5155 – 5161, DOI: 10.1021/nl501996v.

S. Morozov, K. Novoselov, M. Katsnelson, F. Schedin, D. Elias and J. Jaszczak, Giant. intrinsic carrier mobilities in graphene and its bilayer, Physical Review Letter 100(1) (2008), 016602, DOI: 10.1103/PhysRevLett.100.016602.

C. Lee, X.Wei, J.W. Kysar and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (5887) (2008), 385 – 388, DOI: 10.1126/science.1157996.

M. J. Allen, V. C. Tung and R. B. Kaner, Honeycomb carbon: a review of graphene, Chemical Reviews 110 (2010), 132 – 145, DOI: 10.1021/cr900070d.

A. Kekulé, Bulletin de la Societe Chimique de Paris 3(2) (1865), 98, https://gallica.bnf.fr/ark:/12148/bpt6k281952v/f102.image; Untersuchungen über aromatische Verbindungen Ueber die Constitution der aromatischen Verbindungen. I. Ueber die Constitution der aromatischen Verbindungen, Annalen der Chemie und Pharmazie 137(2) (1866), 129, DOI: 10.1002/jlac.18661370202.

M. Sepioni, R. R. Nair, S. Rablen, J. Narayanan, F. Tuna, R. Winpenny, A. K. Geim and I. V. Grigorieva, Limits on intrinsic magnetism in graphene, Physical Review Letter 105 (2010), 207205, DOI: 10.1103/PhysRevLett.105.207205

R. J. Toh, H. L. Poh, Z. Sofer and M. Pumera, Transition metal (Mn, Fe, Co, Ni)-doped graphene hybrids for electrocatalysis, Chemistry an Asian Journal 8 (2013), 1295 – 1300, DOI: 10.1002/asia.201300068.

T. Hou, L. Kong, X. Guo, Y. Wu, F. Wang, Y. Wen and H. Yang, Magnetic ferrous-doped graphene for improving Cr(VI) removal, Materials Research Express 3(4) (2016), 045006, DOI: 10.1088/2053-1591/3/4/045006.

M. Wu, C. Cao and J. Z. Jiang, Electronic structure of substitutionally Mn-doped graphene, New Journal of Physics 12 (2010), 063020, DOI: 10.1088/1367-2630/12/6/063020.

G. Bertoni, L. Calmels, A. Altibelli and V. Serin, First-principles calculation of the electronic structure and eels spectra at the graphene/Ni(111) interface, Physical Review B 71(7) (2005), 075402, DOI: 10.1103/PhysRevB.71.075402.

V. M. Karpan, G. Giovannetti, P. A. Khomyakov, M. Talanana, A. A. Starikov, M. Zwierzycki, J. van den Brink, G. Brocks and P. J. Kelly, Graphite and graphene as perfect spin filters, Physical Review Letter 99(17) (2007), 1766021, DOI: 10.1103/PhysRevLett.99.176602.

V. M. Karpan, P. A. Khomyakov, A. A. Starikov, G. Giovannetti, M. Zwierzycki, M. Talanana, G. Brocks, J. van den Brink and P. J. Kelly, Theoretical prediction of perfect spin filtering at interfaces between close-packed surfaces of Ni or Co and graphite or graphene, Physical Review B 78(19) (2008), 195419, DOI: 10.1103/PhysRevB.78.195419.

M. Noga, Separation of charge and spin degrees of freedom in the Hubbard model, Czechoslovak Journal of Physics 42 (1992), 823 – 841, DOI: 10.1007/BF01904154.

R. Mishra, W. Zhou, S.J. Pennycook, S. T. Pantelides and J.-C. Idrobo, Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides, Physical Review B 88 (2013), 144409, DOI: 10.1103/PhysRevB.88.144409.

K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor, Physical Review Letter 105 (2010), 136805, DOI: 10.1103/PhysRevLett.105.136805.

M. L. Ould Ne, A. Abbassi, A. G. El hachimi, A. Benyoussef, H. Ez-Zahraouy and A. El Kenz, Electronic, optical, properties and widening band gap of graphene with Ge doping, Optical and Quantum Electronics 49 (2017), Article number 218, DOI: 10.1007/s11082-017-1024-5.

A. Kheyri, Z. Nourbakhsh and E. Darabi, Effect of Fe, Co, Si and Ge impurities on optical properties of graphene sheet, Thin Solid Films 612 (2016), 214 – 224, DOI: 10.1016/j.tsf.2016.06.007

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari and R. M. Wentzcovitch, QUANTUM ESPRESSO: a modular and opensource software project for quantum simulations of materials, Journal of Physics: Condensed Matter 21 (2009), 395502, DOI: 10.1088/0953-8984/21/39/395502.

N. Troullier and J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Physical Review B 43 (1993), 1993 – 2006, DOI: 10.1103/PhysRevB.43.1993.

H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Physical Review B B13 (1976), 5188 – 5192, DOI: 10.1103/PhysRevB.13.5188

L. Hu, Y. Sun, Y. Zhou, L. Bai, Y. Zhang, M. Han, H. Mumei, L. Hui, Y. Liu, and Z. Kang, Nitrogen and sulfur co-doped chiral carbon quantum dots with independent photoluminescence and chirality, Inorganic Chemistry Frontiers 4(6) (2017), 946 – 953, DOI: 10.1039/C7QI00118E

J. M. Carlsson and M. Scheffler, Structural, electronic and chemical properties of nanoporous carbon, Physical Review Letters 96 (2006), 046806, DOI: 10.1103/PhysRevLett.96.046806.

O. Olaniyan, R. E. Mapasha, D. Y. Momodu, M. J. Madito (Moshawe), A. A. Kahleed, F. U. Ugbo, A. Bello, F. Barzegar, K. O. Oyedotun, N. I. Manyala, Exploring the stability and electronic structure of beryllium and sulphur Co-doped graphene: first principles study, RSC Advances 6 (2016), 88392 – 88402, http://hdl.handle.net/2263/60303.

S. Ullah, A. Hussain, W. A. Syed, M. A. Saqlain, I. Ahmad, O. Leenaertse and A. Karimf, Band-gap tuning of graphene by Be doping and Be, B co-doping: a DFT study, RSC Advances, 5(69) (2015), 55762 – 55773, DOI: 10.1039/C5RA08061D.

D. Usachov, O. Vilkov, A. Grüneis, D. Haberer, A. Fedorov, V. K. Adamchuk, A. B. Preobrajenski, P. Dudin, A. Barinov, M. Oehzelt, C. Laubschat and D. V. Vyalikh, Nitrogen-doped graphene: efficient growth, structure, and electronic properties, Nano Letters 11(12) (2011), 5401 – 5407, DOI: 10.1021/nl2031037.

S. Mekonnen and P. Singh, Electronic structure and nearly room-temperature ferromagnetism in V-doped monolayer and bilayer MoS2, International Journal of Modern Physics B 32(21) (2018), 1850231, DOI: 10.1142/S0217979218502314.

S. M. Hailemariam, Electronic structure and room temperature of 2D dilute magnetic semiconductors in bilayer MoS2 doped Mn, Advances in Condensed Matter Physics 2020 (2020), Article ID 9635917, 8 page, DOI: 10.1155/2020/9635917.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438 (2005), 197, DOI: 10.1038/nature04233.

A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, The electronicproperties of graphene, Reviews of Modern Physics 81 (2009), 109, DOI: 10.1103/RevModPhys.81.109.

Downloads

Published

2020-08-31
CITATION

How to Cite

Anagaw, M. Y., & Hailemariam, S. M. (2020). The Effect of Manganese(Mn) Substitutional Doping on Structural, Electronic and Magnetic Properties of Pristine Hexagonal Graphene: Using Spin Polarized Density Functional Theory. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 7(2), 95–105. https://doi.org/10.26713/jamcnp.v7i2.1422

Issue

Section

Research Article