Electron Injection for Direct Acceleration by A Gaussian Laser Field Under the Influence of Azimuth Magnetic Field
DOI:
https://doi.org/10.26713/jamcnp.v6i3.1320Keywords:
Gaussian laser pulse, Electron's injection angleAbstract
Electron injection for direct acceleration by a circularly polarized Gaussian laser field under the influence of azimuth magnetic field is studied. The electron energy gain, \(\gamma\) versus electron's injection angle \(\delta\) at different values laser intensity parameters and laser spot size shows the energy enhancement on increasing the parameters. For a small change in angle of injection then there appears a significant change in electron energy gain also for the variation of energy gain and magnetic field energy gain increases when value of \(\delta\) $ is 8.5, 8.0, 13.5 and 13, respectively. It is observed that \(\delta\) should be small and optimized for appropriate momentum to maximize the electron energy gain due to a relativistic longitudinal momentum and the variation of the scattering angle of the electron \(\theta\) with respect to electron's injection angle \(\delta\) in the presence of magnetic field shows a relatively lower scattering is observed with optimized values of injection angle in the presence of magnetic field.Downloads
References
A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, V. Malka, C. B. Darrow, C. Danson, D. Neely and F. N. Walsh, Electron acceleration from the breaking of relativistic plasma waves, Nature 377, 606 (1995), DOI: 10.1038/377606a0.
E. Esarey, P. Sprangle, J. Krall and A. Ting, Overview of plasma-based accelerator concepts, IEEE Trans. Plasma Sci. 24, 252 (1996), DOI: 10.1109/27.509991.
J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy and V. Malka, A laser-plasma accelerator producing monoenergetic electron beams, Nature (London) 431, 541 (2004), DOI: 10.1038/nature02963.
S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton and K. Krushelnick, Monoenergetic beams of relativistic electrons from intense laser-plasma interactions, Nature (London) 431, 535 (2004), DOI: 10.1038/nature02939.
K. P. Singh, R. Arya and A. K. Malik, Effect of initial phase on error in electron energy obtained using paraxial approximation for a focused laser pulse in vacuum, J. Appl. Phys. 118, 104902 (2015), DOI: 10.1063/1.4930291.
S. G. Bochkarev and V. Yu. Bychenkov, Acceleration of electrons by tightly focused femtosecond laser, Quantum Electron. 37, 273 (2007), DOI: 10.1070/QE2007v037n03ABEH013462.
S. X. Hu and A. F. Starace, Laser acceleration of electrons to giga-electron-volt energies using highly charged ions, Phys. Rev. E 73, 066502 (2006), DOI: 10.1103/PhysRevE.73.066502.
Y. I. Salamin, Electron acceleration in a tightly-focused vacuum laser beat wave, Phys. Lett. A 335, 289 (2005), DOI: 10.1016/j.physleta.2004.12.049.
B. Hafizi, A. K. Ganguly, A. Ting, C. I. Moore and P. Sprangle, Analysis of Gaussian beam and Bessel beam driven laser accelerators, Phys. Rev. E 60, 4779 (1999), DOI: 10.1103/PhysRevE.60.4779.
H. Hora, M. Hoelss,W. Scheid, J.Wang, Y. Ho, F. Osman and R. Castillo, Principle of high accuracy for the nonlinear theory of the acceleration of electrons in a vacuum by lasers at relativistic intensities, Laser Part. Beams 18, 135 (2000), DOI: 10.1017/S0263034600181169.
Y. I. Salamin, G. R. Mocken and C. H. Keitel, Electron scattering and acceleration by a tightly focused laser beam, Phys. Rev. Spec. Top. Accel. Beams 5, 101301 (2002), DOI: 10.1103/PhysRevSTAB.5.101301.
Y. I. Salamin and C. H. Keitel, Electron acceleration by a tightly focused laser beam, Phys. Rev. Lett. 88, 095005 (2002), DOI: 10.1103/PhysRevLett.88.095005.
M. W. Lin, B. W. Morgan and I. Jovanovic, Progress on the Study of Direct Laser Electron Acceleration in Density-Modulated Plasma Waveguides, Proceedings of IPAC, Richmond, VA, USA WEPJE024 (2015).
A. Pak, K. A. Marsh, S. F. Martins, W. Lu, W. B. Mori, and C. Joshi, Injection and trapping of tunnel-ionized electrons into laser-produced wakes, Phys. Rev. Lett. 104, 025003 (2010), DOI: 10.1103/PhysRevLett.104.025003.
E. Oz, S. Deng, T. Katsouleas, P. Muggli, C. D. Barnes, I. Blumenfeld, F. J. Decker, P. Emma, M. J. Hogan, R. Ischebeck, R. H. Iverson, N. Kirby, P. Krejcik, C. O'Connell, R. H. Siemann, D. Walz, D. Auerbach, C. E. Clayton, C. Huang, D. K. Johnson, C. Joshi, W. Lu, K. A. Marsh, W. B. Mori and M. Zhou, Ionization-induced electron trapping in ultrarelativistic plasma wakes, Phys. Rev. Lett. 98, 084801 (2007), DOI: 10.1103/PhysRevLett.98.084801.
X. L. Xu, Y. P. Wu, C. J. Zhang, F. Li, Y. Wan, J. F. Hua, C. H. Pai, W. Lu, P. Yu, C. Joshi and W. B. Mori, Low emittance electron beam generation from a laser wakefield accelerator using two laser pulses with different wavelengths, Phys. Rev. Spec. Top. Accel. Beams 17, 061301 (2014), DOI: 10.1103/PhysRevSTAB.17.061301.
A. Sell and F. X. Kartner, Attosecond electron bunches accelerated and compressed by radially polarized laser pulses and soft-x-ray pulses from optical undulators, J. Phys. B At. Mol. Opt. Phys. 47, 015601 (2014), DOI: 10.1088/0953-4075/47/1/015601.
A. F. Lifshitz, J. Faure, Y. Glinec, V. Malka and P. Mora, Proposed scheme for compact GeV laser plasma accelerator, Laser Part. Beams 24, 255 (2010), DOI: 10.1017/S026303460606037X.
L. J. Wong and F. X. Kartner, Direct acceleration of an electron in infinite vacuum by a pulsed radially-polarized laser beam, Opt. Express 18, 25035 (2010), DOI: 10.1364/OE.18.025035.
N. Kant, J. Rajput, P. Giri and A. Singh, Effect of axial magnetic field on axicon laser-induced electron acceleration, High Energy Density Phys. 18, 20 – 25 (2016), DOI: 10.1016/j.hedp.2015.12.002.
F. V. Hartemann, J. R. VanMeter, A. L. Troha, E. C. Landahl, N. C. Luhmann, H. A. Baldis, A. Gupta and A. K. Kerman, Three-dimensional relativistic electron scattering in an ultrahighintensity laser focus, Phys. Rev. E 58 5001 (1998), DOI: 10.1103/PhysRevE.58.5001.
B. Hafizi, A. Ting, E. Esarey, P. Sprangle and J. Krall, Vacuum beat wave acceleration, Phys. Rev. E 55, 5924 (1997), DOI: 10.1103/PhysRevE.55.5924.
B. Hafizi, A. K. Ganguly, A. Ting, C. I. Moore and P. Sprangle, Analysis of Gaussian beam and Bessel beam driven laser accelerators, Phys. Rev. E 60, 4779 (1999), DOI: 10.1103/Phys-RevE.60.4779.
M. Lax, W. H. Louisell and W. B. McKnight, From Maxwell to paraxial wave optics, Phys. Rev. A 11, 1365 (1975), DOI: 10.1103/PhysRevA.11.1365.
Y. I. Salamin, Direct particle acceleration by two identical crossed radially polarized laser beams, Phys. Rev. A 82, 013823 (2010), DOI: 10.1103/PhysRevA.82.013823.
H. S. Ghotra and N. Kant, Sensitiveness of axial magnetic field on electron acceleration by a radially polarized laser pulse in vacuum, Opt. Commun. 356, 118 (2015), DOI: 10.1016/j.optcom.2015.07.058.
H. S. Ghotra and N. Kant, TEM modes influenced electron acceleration by Hermite–Gaussian laser beam in plasma, Laser Part. Beams 34, 385 (2016), DOI: 10.1017/S0263034616000239.
J. X. Li, W. P. Zang and J. G. Tian, Electron acceleration in vacuum induced by a tightly focused chirped laser pulse, Appl. Phys. Lett. 96, 031103 (2010), DOI: 10.1063/1.3294634.
H. S. Ghotra, D. Jaroszynski, B. Ersfeld, N. S. Saini, S. Yoffe and N. Kant, Transverse electromagnetic Hermite–Gaussian mode-driven direct laser acceleration of electron under the influence of axial magnetic field, Laser Part. Beams 36, 154 – 161 (2018), DOI: 10.1017/S0263034618000083.
E. Esarey, R. F. Hubbard, W. P. Leemans, A. Ting and P. Sprangle, Electron injection into plasma wakefields by colliding laser pulses, Phys. Rev. Lett. 79, 2682 (1997), DOI: 10.1103/PhysRevLett.79.2682.
E. Esarey, C. B. Schroeder and W. P. Leemans, Physics of laser-driven plasma-based electron accelerators, Rev. Mod. Phys. 81, 1229 (2009), DOI: 10.1103/RevModPhys.81.1229.
Y. I. Salamin and N. M. Jisrawi, Electron laser acceleration in vacuum by a quadratically chirped laser pulse, J. Phys. B At. Mol. Opt. Phys. 47, 025601 (2014), DOI: 10.1088/0953-4075/47/2/025601.
K. P. Singh, Electron acceleration by an intense short pulse laser in a static magnetic field in vacuum, Phys. Rev. E 69, 056410 (2004), DOI: 10.1103/PhysRevE.69.056410.
S. Kumar and M. Yoon, Electron acceleration by a chirped circularly polarized laser pulse in vacuum in the presence of a planar magnetic wiggler, Phys. Scr. 77, 025404 (2008), DOI: 10.1088/0031-8949/77/02/025404.
F. Sohbatzadeh, S. Mirzanejhad and M. Ghasemi, Electron acceleration by a chirped Gaussian laser pulse in vacuum, Phys. Plasmas. 13, 123108 (2006), DOI: 10.1063/1.2405345.
F. V. Hartemann, E. C. Landahl, A. L. Troha, J. R. Van Meter and H. A. Baldis, The chirpedpulse inverse free-electron laser: A high-gradient vacuum laser accelerator, Phys. Plasmas 6, 4104 (1999), DOI: 10.1063/1.873718.
F. Sohbatzadeh, S. Mirzanejhad and H. Aku, Synchronization scheme in electron vacuum acceleration by a chirped Gaussian laser pulse, Phys. Plasmas 16, 023106 (2009), DOI: 10.1063/1.3077666.
K. P. Singh and V. Sajal, Quasimonoenergic collimated electrons from the ionization of nitrogen by a chirped intense laser pulse, Phys. Plasmas 16, 043113 (2009), DOI: 10.1063/1.3116646.
A. G. Khachatryan, F. A. Van Goor and K. J. Boller, Interaction of free charged particles with a chirped electromagnetic pulse, Phys. Rev. E 70, 067601 (2004), DOI: 10.1103/Phys-RevE.70.067601.
J. D. Lawson, Lasers and accelerators, IEEE Trans. Nucl. Sci. 26, 4217 (1979), DOI: 10.1109/TNS.1979.4330749.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.