Diamagnetic Susceptibility and Donor Binding Energy of Impurity States in Zinc Blende AlGaN/GaN Quantum Dot

Authors

  • B. Prem Kumar PG & Research Department of Physics, Pachaiyappa's College (University of Madras), Chennai 600 030
  • D. Prasanna PG & Research Department of Physics, Pachaiyappa's College (University of Madras), Chennai 600 030
  • P. Elangovan PG & Research Department of Physics, Pachaiyappa's College (University of Madras), Chennai 600 030

DOI:

https://doi.org/10.26713/jamcnp.v6i3.1312

Keywords:

Quantum dot, Binding energy, Nanoparticles, Variational method

Abstract

In the frame work of effective mass approximation, we have determined the donor binding energies of the most minimal donor states, \(1s\), \(2p_0\) and \(2p_{\pm}\), in zinc blende AlGaN/GaN Quantum dot in the impact of the magnetic field along the development(growth) directions. The calculations are performed utilizing variational method. The calculations are performed using variational method. As a function of the quantum dot radius and the applied magnetic field, the donor binding energies and diamagnetic susceptibilities are obtained. The oscillator quality of the potential transitions between the donor states is then figured by displaying them as the conditions of a two-level atom. Our outcomes demonstrate that (i) the donor binding energy is appreciable for smaller dot radii and magnetic field effect is predominant for larger dot radii, (ii) the diamagnetic susceptibility increases with applied magnetic field and is appreciable only for larger dot radii, (iii) The oscillator quality of the potential transitions between the donor states is not pronounced for smaller dot size radii and plays a significant role in larger dot radii.

Downloads

Download data is not yet available.

References

A. Corella-Madueno, R. A. Rosas, J. L. Marí­n and R. Riera, Phys. Low Dimens. Semicond. Struct. 5/6, 75 (1999), URL: https://www.researchgate.net/publication/286614613_Confinement_of_Hydrogenic_Impuritieswithin_Asymme_tric_and_Symmetric_Quantum_Wires .

Y. Wu and L. M. Falicov, Phys. Rev. B 29, 3671 (1984), DOI: 10.1103/PhysRevB.29.3671.

W. Hansen, T. P. Smith III, K. Y. Lee, J. A. Brum, C. M. Knoedler, J. M. Hong and D. P. Kern, Phys. Rev. Lett. 62, 2168 (1989), DOI: 10.1103/PhysRevLett.62.2168.

P. Ramvall, S. Tanaka, S. Nomura, P. Riblet and Y. Aoyagi, Appl. Phys. Lett. 73, 1104 (1998), DOI: 10.1063/1.122098.

A. Y. Cho and J. R. Arhur, Prog. Solid State Chem. 10, 157 (1975), DOI: 10.1016/0079-6786(75)90005-9.

P. D. Dapkus, Annu. Rev. Mater. Sci. 12, 243 (1982), DOI: 10.1146/annurev.ms.12.080182.001331.

G. Cantele, D. Nino and G. Iadonisi, J. Phys. Condens. Matter 12, 9019 (2000), DOI: 10.1088/0953-8984/12/42/308.

Y. Wang and N. Herron, J. Phys. Chem. 95, 525 (1991), DOI: 10.1021/j100155a009.

A. D. Yoffe, Adv. Phys. 51, 1 (2001), DOI: 10.1080/00018730010006608.

G. Bastard, Phys. Rev. B 24, 4714 (1981), DOI: 10.1103/PhysRevB.24.4714.

N. Porras-Montenegro and S. T. Perez-Merchancano, Phys. Rev. B 46, 15 (1992), DOI: 10.1103/PhysRevB.46.9780, and references therein.

C. Maihiot, Y. Chang and T. C. McGill, Phys. Rev. B 26, 4449 (1982), DOI: 10.1103/Phys-RevB.26.4449.

S. Nakamura and S. F. Chichibu, Introduction to Nitride Semiconductor Blue Lasers and LEDs, Taylor & Francis, London (2000), DOI: 10.1201/9781482268065.

S. Krishnamurthy, K. Nashold and A. Sher, Appl. Phys. Lett. 77 (2000), 355, DOI: 10.1063/1.126974.

S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, H. Okumura, Appl. Phys. Lett. 79, 4319 (2001), DOI: 10.1063/1.1428404.

Y. Yang, X. A. Cao and C. H. Yan, Appl. Phys. Lett. 94, 041117 (2009), DOI: 10.1063/1.3077017.

E. P. Pokatilov and D. L. Nika, Appl. Phys. Lett. 89, 113508 (2006), DOI: 10.1063/1.2349835.

L. M. Jiang, H. L. Wang, H.T. Wu, Q. Gong and S. L. Feng, J. Appl. Phys. 105, 053710 (2009), DOI: 10.1063/1.3080175.

F. C. Jiang and C. X. Xia, Physica B, 403, 165 (2008), DOI: 10.1016/j.physb.2007.08.153.

C. X. Xia, S. Y. Wei and X. Zhao, Appl. Surf. Sci. 253, 5345 (2007), DOI: 10.1016/j.apsusc.2006.12.008.

H. Wang, L. Jiang, Q. Gong and S. Feng, Physica B 405, 3818 (2010), DOI: 10.1016/j.physb.2010.06.008.

C. X. Xia, Y. M. Liu and S. Y. Wei, Phys. Lett. A 372, 6420 (2008), DOI: 10.1016/j.physleta.2008.08.062.

A. F. Wright and J. S. Nelson, Appl. Phys. Lett. 66 (1995), 3051, DOI: 10.1063/1.114274. [24] H. Wang, G. A. Farias and V. N. Freire, Phys. Rev. B 60 (1999), 5705, DOI: 10.1103/Phys-RevB.60.5705, and reference therein.

J. J. Sharkey, C. K. Yoo and A. J. Peter, Superlatt. Microstruct. 48 (2010), 248 – 255, DOI: 10.1016/j.spmi.2010.04.016.

Downloads

Published

2019-12-31
CITATION

How to Cite

Kumar, B. P., Prasanna, D., & Elangovan, P. (2019). Diamagnetic Susceptibility and Donor Binding Energy of Impurity States in Zinc Blende AlGaN/GaN Quantum Dot. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 6(3), 173–181. https://doi.org/10.26713/jamcnp.v6i3.1312

Issue

Section

Research Article