Effect of Dense Plasma Environment on the Spectroscopic Properties of He-like Ca\(^{18+}\) Ion

Authors

  • Dishu Dawra Department of Physics and Astrophysics, University of Delhi, Delhi 110007
  • Mayank Dimri Department of Physics, Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078; Department of Physics and Astrophysics, University of Delhi, Delhi 110007
  • Avnindra Kumar Singh Department of Physics, Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078; Department of Physics and Astrophysics, University of Delhi, Delhi 110007
  • Alok Kumar Singh Jha Department of Physics, Kirori Mal College, University of Delhi, Delhi 110007
  • Shougaijm Somorendro Singh Department of Physics and Astrophysics, University of Delhi, Delhi 110007

DOI:

https://doi.org/10.26713/jamcnp.v6i3.1295

Keywords:

Strongly coupled plasma, Atomic structure, Radiative properties

Abstract

Plasma shielding effects on the energy levels and radiative properties of He-like Ca\(^{18+}\) ion under dense plasma conditions have been studied. For this purpose, the multiconfiguration Dirac-Fock method has been implemented by incorporating the ion sphere model potential as a modified interaction potential between the electron and the nucleus. To check the authenticity of our results, independent calculations have been performed using the modified relativistic configuration interaction method. It is observed that the transition energies associated with \(\Delta n = 0\) transitions are blue shifted, whereas red shifted for \(\Delta n \neq 0\) transitions. The variation in transition probabilities and weighted oscillator strengths with plasma densities has also been analyzed. The present results should be beneficial in the plasma modeling and fusion plasma research applications.

Downloads

Download data is not yet available.

References

M. S. Murillo, J. Weisheit, S. B. Hansen and M. Dharma Wardana, Phys. Rev. E 87, 063113 (2013), DOI: 10.1103/PhysRevE.87.063113.

B. Saha and S. Fritzsche, J. Phys. B: At. Mol. Opt. Phys. 40, 259 (2007), DOI: 10.1088/0953-4075/40/2/002.

M. Nantel, G. Ma, S. Gu, C. Y. Cote, J. Itatani and D. Umstadter, Phys. Rev. Lett. 80, 4442 (1998), DOI: 10.1103/PhysRevLett.80.4442.

S. Skupsky, Phys. Rev. A 21, 1316 (1980), DOI: 10.1103/PhysRevA.21.1316.

S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982), DOI: 10.1103/RevModPhys.54.1017.

M. S. Murillo and J. C. Weisheit, Phys. Rep. 302, 1 (1998), DOI: 10.1016/S0370-1573(98)00017-9.

A. Sil and P. Mukherjee, Int. J. Quantum Chem. 106, 465 (2006), DOI: 10.1002/qua.20733.

A. Sil, J. Anton, S. Fritzsche, P. Mukherjee and B. Fricke, Eur. Phys. J. D 55, 645 (2009), DOI: 10.1140/epjd/e2009-00258-6.

X. Li, Z. Xu and F. Rosmej, J. Phys. B: At. Mol. Opt. Phys. 39, 3373 (2006), DOI: 10.1088/0953-4075/39/16/019.

R. Rodriguez, J. M. Gil and R. Florido, Phys. Scr. 76, 418 (2007), DOI: 10.1088/0031-8949/76/5/002.

S. Bhattacharyya, J. Saha and T. Mukherjee, Phys. Rev. A 91, 042515 (2015), DOI: 10.1103/Phys-RevA.91.042515.

M. Belkhiri, C. J. Fontes and M. Poirier, Phys. Rev. A 92, 032501 (2015), DOI: 10.1103/Phys-RevA.92.032501.

X.-F. Li, G. Jiang, H.-B.Wang, M.Wu and Q. Sun, Phys. Scr. 92, 075401 (2017), DOI: 10.1088/1402-4896/aa7000.

X.-F. Li and G. Jiang, Chin. Phys. B 27, 073101 (2018), DOI: 10.1088/1674-1056/27/7/073101.

Z. B. Chen, K. Ma, Y. L. Ma and K. Wang, Phys. Plasmas 26, 082101 (2019), DOI: 10.1063/1.5100850.

Z.-B. Chen, J. Quant. Spectrosc. Radiat. Transf. 237, 106615 (2019).

Z.-B. Chen, J. Electron Spectros. Relat. Phenomena 237, 146894 (2019), DOI: 10.1016/j.elspec.2019.146894.

Z.-B. Chen, K. Wang, K. Ma and F. Hu, J. Quant. Spectrosc. Radiat. Transf. 236, 106584 (2019), DOI: 10.1016/j.jqsrt.2019.106584.

Z.-B. Chen, Radiat. Phys. Chem. 166, 108508 (2020), DOI: 10.1016/j.radphyschem.2019.108508.

K. M. Aggarwal and F. P. Keenan, Phys. Scr. 85, 025306 (2012), DOI: 10.1088/0031-8949/85/02/025306.

P. H. Norrington, http://amdpp.phys.strath.ac.uk/UKAPAP/codes.html.

I. Grant, J. McKenzie, P. Norrington, M. Mayers and N. Pyper, Comput. Phys. Commun. 21, 207 (1980), DOI: 10.1016/0010-4655(80)90041-7.

A. Singh, D. Dawra, M. Dimri, A. K. Jha and M. Mohan, Phys. Plasmas 26, 062704 (2019), DOI: 10.1063/1.5100565.

A. Singh, M. Dimri, D. Dawra, A. K. Jha, N. Verma and M. Mohan, Radiat. Phys. Chem. 156, 174 (2019), DOI: 10.1016/j.radphyschem.2018.11.002.

A. Singh, M. Dimri, D. Dawra, A. K. Jha and M. Mohan, Can. J. Phys. 97, 436 (2019), DOI: 10.1139/cjp-2018-0218.

M. F. Gu, Can. J. Phys. 86, 675 (2008), DOI: 10.1139/p07-197.

A. Kramida, Yu. Ralchenko, J. Reader and NIST ASD Team, NIST Atomic Spectra Database (ver. 5.6.1), [Online], available: https://physics.nist.gov/asd [2019, June 20]. National Institute of Standards and Technology, Gaithersburg, MD. (2018).

Downloads

Published

2019-12-31
CITATION

How to Cite

Dawra, D., Dimri, M., Singh, A. K., Jha, A. K. S., & Singh, S. S. (2019). Effect of Dense Plasma Environment on the Spectroscopic Properties of He-like Ca\(^{18+}\) Ion. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 6(3), 103–113. https://doi.org/10.26713/jamcnp.v6i3.1295

Issue

Section

Research Article