Electron Acceleration by a Chirped Short Intense Laser Pulse in Presence of an External Axial Magnetic Field in Vacuum With Different Phase Values

Authors

  • Ravindra Singh Department of Physics, Shivaji College (University of Delhi), Ring Road, Shivaji Garden, Raja Garden, New Delhi 110027
  • . Sandeep Department of Physics, Deen Dayal Upadhyaya College (University of Delhi), Sector 3, Dwarka, Delhi 110078
  • Jaspreet Kaur Department of Electronics and Communication Engineering, Beant College of Engineering and Technology, Gurdaspur 143521, Punjab

DOI:

https://doi.org/10.26713/jamcnp.v6i2.1279

Keywords:

Chirped short intense laser pulse, Magnetic field

Abstract

We investigated electron acceleration by a chirped short intense laser pulse in presence of an external magnetic field. The retained electron energy is very high with frequency chirp on increasing the value of chirp parameter and constant value of laser intensity parameter. Also, the retained electron energy increases on increment of laser intensity parameter. A linear frequency chirp \(\omega (t ) =\omega_0 (1-\alpha t)t\) was considered, here \(\omega _0\) is the laser frequency at \(z=0\) and \(\alpha\) is the frequency chirp parameter. On increasing the chirp parameters corresponding to the magnetic field with phase then the retained electron energy become so high. Also, we study the variation of the relativistic factor gamma \((\gamma)\) and the laser intensity parameter \((a _0 )\); also the variation of the relativistic factor gamma \(( \gamma )\) and the magnetic field \((b_0)\) with different values of the phase, \(\phi=0\), \(\pi /4\) and \(\pi/2\), respectively. As the time duration is increased the energy gain increased.

Downloads

Download data is not yet available.

References

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985), DOI: 10.1016/0030-4018(85)90120-8.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy and V. Malka, Nature (London) 431, 541 (2004), DOI: 10.1038/nature02963.

C. G. R. Geddes, Cs. Toth, J. Van Tilborg, E. Earey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary and W. P. Leemans, Nature (London) 431, 538 (2004), DOI: 10.1038/nature02900.

F. Sohbatzadeh, S. Mirzanejhad and M. Ghasemi, Phys. Plasmas 13, 123108 (2006), DOI: 10.1063/1.2405345.

F. Sohbatzadeh, S. Mirzanejhad and H. Aku, Phys. Plasmas 16, 023106 (2009), DOI: 10.1063/1.3077666.

M. D. Perry and G. Mourou, Science 264, 917 (1994), DOI: 10.1126/science.264.5161.917.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle and G. Gerber, Science 282, 919 (1998), DOI: 10.1126/science.282.5390.919.

B. Kohler, V. V. Yakovlev, J. Che, J. L. Krause, M. Messina, K. R. Wilson, N. Schwentner, R. M. Whitnell and Y. Yan, Phys. Rev. Lett. 74, 3360 (1995), DOI: 10.1103/PhysRevLett.74.3360.

S. Mirzanejhad, F. Sohbatzadeh, M. Asri and K. Ghanbari, Phys. Plasmas 17, 033103 (2010), DOI: 10.1063/1.3339908.

A. G. Khachatryan, F. A. van Goor, J. W. J. Verschuur and K. J. Boller, Phys. Plasmas 12, 062116 (2005), DOI: 10.1063/1.1938167.

R. Bingham, U. De Angelis, M. R. Amin, R. A. Cairns and B. McNamara, Plasma Phys. Controlled Fusion 34, 557 (1992), DOI: 10.1088/0741-3335/34/4/014.

K. P. Singh, Appl. Phys. Letters 87, 254102 (2005), DOI: 10.1063/1.2149984.

C. H. Keitel, Phys. Rev. B 29, L873 (1996), DOI: 10.1088/0953-4075/29/24/003.

P. X. Wang, Y. K. Ho, X. Q. Yuan, Q. Kong, N. Cao, L. Shao, A. M. Sessler, E. Esarey, E. Moshkovich, Y. Nishida, N. Yugami, H. Ito, J. X. Wang and S. Scheid, J. Appl. Phys. 91, 856 (2001), DOI: 10.1063/1.1423394.

D. Umstadter, Phys. Plasmas 8, 1774 (2001), DOI: 10.1063/1.1364515.

J. Pang, Y. K. Ho, X. Q. Yuan, N. Cao, Q. Kong, P. X. Wang, L. Shao, E. H. Esarey and A. M. Sessler, Phys. Rev. E 66, 066501 (2002), DOI: 10.1103/PhysRevE.66.066501.

X. Wang, M. Krishnan, N. Saleh, H. Wang and D. Umstadter, Phys. Rev. Lett. 84, 5324 (2000), DOI: 10.1103/PhysRevLett.84.5324.

J.-X. Li, W.-P. Zang and J.-G. Tian, Appl. Phys. Letters 96, 031103 (2010), DOI: 10.1063/1.3294634.

F. Sohbatzadeh, S. Mirzanejhad and M. Ghasemi, Phys. Plasmas 13, 123108 (2006), DOI: 10.1063/1.2405345.

D. N. Gupta, H. J. Jang and H. Suk, J. Appl. Phys. 105, 106110 (2009), DOI: 10.1063/1.3117524.

R. Hajima and R. Nagai, Phys. Rev. Lett. 91, 024801 (2003), DOI: 10.1103/PhysRevLett.91.024801.

D. F. Gordon, B. Hafizi, R. F. Hubbard, J. R. Peñano, P. Sprangle and A. Ting, Phys. Rev. Lett. 90, 21500 (2003), DOI: 10.1103/PhysRevLett.90.215001.

J. M. Dias, C. Stenz, N. Lopes, X. Badiche, F. Blasco, A. Dos Santos, L. Oliveira e Silva, A. Mysyrowicz, A. Antonetti, and J. T. Mendonça, Phys. Rev. Lett. 78, 4773 (1997), DOI: 10.1103/PhysRevLett.78.4773.

Y. I. Salamin and N. M. Jisrawi, J. Phys. B: At. Mol. Opt. Phys. 47, 025601 (2014), DOI: 10.1088/0953-4075/47/2/025601.

D. N. Gupta and H. Suk, Laser Part. Beams 25, 31 – 36 (2007), DOI: 10.1017/S026303460707005X.

N. Kant, J. Rajput and A. Singh, High Energy Density Physics 26, 16 – 22 (2018), DOI: 10.1016/j.hedp.2017.11.003.

Downloads

Published

2019-08-02
CITATION

How to Cite

Singh, R., Sandeep, ., & Kaur, J. (2019). Electron Acceleration by a Chirped Short Intense Laser Pulse in Presence of an External Axial Magnetic Field in Vacuum With Different Phase Values. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 6(2), 81–91. https://doi.org/10.26713/jamcnp.v6i2.1279

Issue

Section

Research Article