Negative Ion Binding Energies in Complex Heavy Systems
DOI:
https://doi.org/10.26713/jamcnp.v5i3.1135Keywords:
Complex heavy systems, Electron affinity, Complex angular momentum, Negative ions, Anionic binding energies, ResonancesAbstract
We review briefly the recent progress in the determination of accurate and reliable electron affinities (EAs) of complex heavy systems with the view of assessing the reliability of the existing measured and/or calculated EAs of these systems. We demonstrate using slow electron collisions with complex heavy systems a novel and robust approach to the determination of reliable EAs from negative ion formation. From the Regge-pole calculated elastic total cross sections (TCSs), characterized by Ramsauer-Townsend (R-T) minima, shape resonances and dramatically sharp resonances manifesting anionic formation, we extract the anionic binding energies (BEs) for the ground, metastable and excited anionic states formed during the collisions. The ground state anionic BEs located at the absolute values of the R-T minima are identified with the systems' EAs. Results for various complex heavy systems, including fullerene molecules are compared with available measurements and calculations.Downloads
References
K. Kasdan and W. C. Lineberger, Phys. Rev. A 10, 1658 (1974), DOI: 10.1103/PhysRevA.10.1658.
Z. Felfli and A. Z. Msezane, Journal of Atomic, Molecular, Condensate & Nano Physics 5, 73 – 80 (2018), DOI: 10.26713/jamcnp.v5i2.1093.
Z. Felfli and A. Z. Msezane, Applied Physics Research 11, 52 (2019), DOI: 10.5539/apr.v11n1p52.
S.-B. Cheng and A. W. Castleman, Sci. Rep. 5, 12414 (2015), DOI: 10.1038/srep12414.
Z. Felfli, A. Z. Msezane and D. Sokolovski, Phys. Rev. A 79, 012714 (2009), DOI: 10.1103/Phys-RevA.79.012714.
S. M. O'Malley and D. R. Beck, Phys. Rev. A 78, 012510 (2008), DOI: 10.1103/PhysRevA.78.012510.
V. T. Davis and J. S. Thompson, J. Phys. B 37, 1961 (2004), DOI: 10.1088/0953-4075/37/9/015.
A. Z. Msezane and Z. Felfli, Atomic negative ions creation: Application in nanocatalysis, in: Advances in Nanotechnology, Z. Bartul and J. Trenor (eds.), Nova Science Publishers, Inc., New York (2017), Vol. 17, Chapter 1, pp. 1 – 41, ISBN: 978-1-53611-004-3.
V. T. Davis, J. S. Thompson and A. Covington, NIMB 241, 118 (2005), DOI: 10.1016/j.nimb.2005.07.073.
M. J. Nadeau, M. A. Garwan, X. L. Zhao and A. E. Litherland, Nucl. Instrum. Methods Phys. Res. B 123, 521 (1997), DOI: 10.1016/S0168-583X(96)00749-5.
V. T. Davis and J. S. Thompson, Phys. Rev. A 65, 010501 (R) (2001), DOI: 10.1103/Phys-RevA.65.010501.
V. A. Dzuba and G. F. Gribakin, Phys. Rev. A 49, 2483 (1994), DOI: 10.1103/PhysRevA.49.2483.
Z. Luo, X. Chen, J. Li and C. Ning, Phys. Rev. A 93, 020501 (R) (2016), DOI: 10.1103/Phys-RevA.93.020501.
L. A. Cole and J. P. Perdew, Phys. Rev. A 25, 1265 (1982), DOI: 10.1103/PhysRevA.25.1265.
P. Calaminici and R. Mejia-Olvera, J. Phys. Chem. C 115, 11891 (2011), DOI: 10.1021/jp1116799.
C. S. Feigerle, R. R. Corderman, S. V. Bobashev and W. C. Lineberger, J. Chem. Phys. 74, 1580 (1981), DOI: 10.1063/1.441289.
D.-L. Huang, P. D. Dau, H. T. Liu and L.-S. Wang, J. Chem. Phys. 140, 224315 (2014), DOI: 10.1063/1.4881421.
C. Brink, L. H. Andersen, P. Hvelplund, D. Mathur and J. D. Voldstad, Chem. Phys. Lett. 233, 52 (1995), DOI: 10.1016/0009-2614(94)01413-P.
X. B. Wang, H. K. Woo, X. Huang, M. M. Kappes and L. S. Wang, Phys. Rev. Lett. 96, 143002 (2006), DOI: 10.1103/PhysRevLett.96.143002.
O. V. Boltalina, L. N. Sidorov, E. V. Sukhanova and E. V. Skokan, Rapid Commun. Mass Spectrom. 7, 1009 (1993), DOI: 10.1002/rcm.1290071109.
O. V. Boltalina, E. V. Dashkova and L. N. Sidorov, Chem. Phys. Lett. 256, 253 (1996), DOI: 10.1016/0009-2614(96)00460-5.
X.-B. Wang, H.-K. Woo, J. Yang, M. M. Kappes and L. S. Wang, J. Phys. Chem. C 111, 17684 (2007), DOI: 10.1021/jp0703861.
O. V. Boltalina, I. N. Ioffe, I. D. Sorokin and L. N. Sidorov, J. Phys. Chem. A 101, 9561 (1997), DOI: 10.1021/jp972643f.
L.-S. Wang, J. J. Conceicao, C. M. Jin and R. E. Smalley, Chem. Phys. Lett. 182, 5 (1991), DOI: 10.1016/0009-2614(91)80094-E.
X.-B. Wang, C.-F. Ding and L.-S. Wang, J. Chem. Phys. 110, 8217 (1999), DOI: 10.1063/1.478732.
X.B. Wang, H. K. Woo and L. S. Wang, J. Chem. Phys. 123, 051106 (2005), DOI: 10.1063/1.1998787.
H. Prinzbach, A. Weller, P. Landenberger, F. Wahl, J. Worth, L. T. Scott, M. Gelmont, D. Olevano and B. von Issendorff, Nature 407 (6800) (2000), 60, DOI: 10.1038/35024037.
S. Yang, K. J. Taylor, M. J. Craycraft, J. Conceicao, C. L. Pettiette, O. Cherhnovsky and R. E. Smalley, Chem. Phys. Lett. 144, 431 (1988), DOI: 10.1016/0009-2614(88)87291-9.
Y. Achiba, M. Kohno, M. Ohara, S. Suzuki and H. Shiromaru, J. Electron Spectros. Rel. Phenom. 142 (3), 231 (2005), DOI: 10.1016/j.elspec.2004.09.016.
H. A. Prinzbach, A. Weller, P. Landenberger, F. Wahl, J. Worth, L. T. Scott, M. Gelmont, D. Olevano and B. von Issendorff, Chem.-A Eur. J. 12, 6268 (2008), DOI: 10.1002/chem.200501611.
H. Kietzmann, R. Rochow, G. Gantef?r, W. Eberhardt, K. Vietze, G. Seifert and P. W. Fowler, Phys. Rev. Lett. 81, 5378 (1998), DOI: 10.1103/PhysRevLett.81.5378.
B. Palpant, A. Otake, F. Hayakawa, Y. Negishi, G. H. Lee, A. Nakajima and K. Kaya, Phys. Rev. B 60, 4509 (1999), DOI: 10.1103/PhysRevB.60.4509.
A. Z. Msezane and Z. Felfli, Chem. Phys. 503, 50 (2018), DOI: 10.1016/j.chemphys.2018.02.005.
Z. Felfli and A. Z. Msezane, Euro Phys. J. D 72, 78 (2018), DOI: 10.1140/epjd/e2018-90121-0.
H. P. Mulholland, Proc. Camb. Phil. Soc. (London) 24, 280 (1928), DOI: 10.1017/S0305004100039074.
J. H. Macek, P. S. Krstic and S. Yu. Ovchinnikov, Phys. Rev. Lett. 93, 183203 (2004), DOI: 10.1103/PhysRevLett.93.183203.
D. Sokolovski, Z. Felfli, S. Yu. Ovchinnikov, J. H. Macek and A. Z. Msezane, Phys. Rev. A 76, 026707 (2007), DOI: 10.1103/PhysRevA.76.012705.
V. K. Dolmatov, M. Ya. Amusia and L. V. Chernysheva, Phys. Rev. A 95, 012709 (2017), DOI: 10.1103/PhysRevA.95.012709.
Z. Felfli, S. Belov, N. B. Avdonina, M. Marletta, A. Z. Msezane and S. N. Naboko, in Proceedings of the Third International Workshop on Contemporary Problems in Mathematical Physics (eds.: J. Govaerts, M. N. Hounkonnou and A. Z. Msezane), World Scientific, Singapore (2004), pp. 218 – 232, [ISBN 981-256-030-0].
S. Belov, N. B. Avdonina, Z. Felfli, M. Marletta, A. Z. Msezane and S. N. Naboko, J. Phys. A 37, 6943 (2004), DOI: 10.1088/0305-4470/37/27/006.
P. G. Burke and C. Tate, Comp. Phys. Commun. 1, 97 (1969), DOI: 10.1016/0010-4655(69)90003-4.
K.-E. Thylwe, Eur. Phys. J. D 68, 323 (2012), DOI: 10.1140/epjd/e2011-20530-4.
A. Z. Msezane and Z. Felfli, Eur. Phys. J. D 72, 173 (2018), DOI: 10.1140/epjd/e2018-90121-0.
J. N. L. Connor, J. Chem. Soc. Faraday Trans. 86, 1627 (1990), DOI: 10.1039/FT9908601627.
T. Regge, Nuovo Cimento 18, 947 (1960), DOI: 10.1007/BF02733035.
W. R. Johnson and C. Guet, Phys. Rev. A 49, 1041 (1994), DOI: 10.1103/PhysRevA.49.1041.
H. Hotop and W. C. Lineberger, J. Chem. Phys. 58, 2379 (2003), DOI: 10.1063/1.1679515.
T. Andersen, H. K. Haugen and H. Hotop, J. Phys. Chem. Ref. Data 28 (6), 1511 (1999), DOI: 10.1063/1.556047.
W. Zheng, X. Li, S. Eustis, A. Grubisic, O. Thomas, H. De Clercq and K. Bowen, Chem. Phys. Lett. 444, 232 (2007), DOI: 10.1016/j.cplett.2007.07.036.
Z. Felfli, A. Z. Msezane and D. Sokolovski, J. Phys. B 41, 105201 (2008), DOI: 10.1088/0953-40754/41/10/105201.
A. M. Covington, D. Calabrese, J. S. Thompson and T. J. Kvale, J. Phys. B 31, L855 (1998), DOI: 10.1088/0953-4075/31/20/002.
M. J. Nadeau, M. A. Garwan, X. L. Zhao and A. E. Litherland, Nucl. Instrum. Methods Phys. Res. B 123, 521 (1997), DOI: 10.1016/S0168-583X(96)00749-5.
V. T. Davis and J. S. Thompson, Phys. Rev. Lett. 88, 073003 (2002), DOI: 10.1103/Phys-RevLett.88.073003.
C.W.Walter, N. D. Gibson, C. M. Janczak, K. A. Starr, A. P. Snedden, R. L. Field III and P. Andersson, Phys. Rev. A 76, 052702 (2007), DOI: 10.1103/PhysRevA.76.052702.
D. Berkovits, S. Ghelberg, O. Heber and M. Paul, Nucl. Instrum. Methods Phys. Res. B 123, 515 (1997), DOI: 10.1016/S0168-583X(96)00678-7.
J. Felton, M. Ray and C. C. Jarrold, Phys. Rev. A 89, 033407 (2014), DOI: 10.1103/Phys-RevA.89.033407.
S. M. O'Malley and D. R. Beck, Phys. Rev. A b, 042509 (2006), DOI: 10.1103/PhysRevA.74.042509.
H. H. Andersen, T. Andersen and U. V. Pedersen, J. Phys. B 31, 2239 (1998), DOI: 10.1088/0953-4075/31/10/013.
V. A. Dzuba and G. F. Gribakin, Phys. Rev. A 49, 2483 (1994), DOI: 10.1103/PhysRevA.49.2483.
W. M. Haynes, Atomic, Molecular, and Optical Physics; Electron Affinities, CRC Press, Boca Raton, FL (2012), Sect. 10.
R. C. Bilodeau, M. Scheer, H. K. Haugen and R. L. Brooks, Phys. Rev. A 61, 012505 (1999), DOI: 10.1103/PhysRevA.61.012505.
N. D. Gibson, B. J. Davies and D. J. Larson, J. Chem. Phys. 98, 5104 (1993), DOI: 10.1063/1.46493.
Z. Felfli, A. Z. Msezane and D. Sokolovski, J. Phys. B 45, 045201 (2012), DOI: 10.1088/0953-4075/45/4/045201.
J. Li, Z. Zhao, M. Andersson, X. Zhang and C. Chen, J. Phys. B 45, 165004 (2012), DOI: 10.1088/0953-4075/45/16/165004.
R. J. Zollweg, Chem. Phys. 50, 4251 (1969), DOI: 10.1063/1.1670890.
D. Datta and D. R. Beck, Phys. Rev. A 50, 1107 (1994), DOI: 10.1103/PhysRevA.50.1107.
S. M. O'Malley and D. R. Beck, Phys. Rev. A 80, 032514 (2009), DOI: 10.1103/PhysRevA.80.032514.
Y. Guo and M. A. Whitehead, Phys. Rev. A 40, 28 (1989), DOI: 10.1103/PhysRevA.40.28.
K. D. Dinov and D. R. Beck, Phys. Rev. A 53, 4031 (1996), DOI: 10.1103/PhysRevA.53.4031.
K. D. Dinov and D. R. Beck, Phys. Rev. A 52, 2632 (1995), DOI: 10.1103/PhysRevA.52.2632.
S. Nagase and K. Kabayashi, Chem. Phys. Lett. 228, 106 (1999), DOI: 10.1016/0009-2614(94)00911-2.
R. J. Tarento and P. Joyes, Z. Phys. D 37, 165 (1996), DOI: 10.1103/PhysRevB.53.11242.
V. G. Zakrzewski, O. Dolgounitcheva and J. V. Ortiz, J. Phys. Chem. A 118, 7424 (2014), DOI: 10.1021/jp412813m.
L. Pan and D. R. Beck, Phys. Rev. A 93, 062501 (2016), DOI: 10.1103/PhysRevA.93.062501.
X. Cao and M. Dolg, Phys. Rev. A 69, 042508 (2004), DOI: 10.1103/PhysRevA.69.042508.
M. L. Tiago, P. R. C. Kent, R. Q. Hood and F. A. Reboredo, J. Chem. Phys. 129, 084311 (2008), DOI: 10.1063/1.2973627.
J. M. Cabrera-Trujillo, J. A. Alonso, M. P. Iniguez, M. J. Lopez and A. Rubio, Phys. Rev. B 53, 16059 (1996), DOI: 10.1103/PhysRevB.53.16059.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.