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Abstract. We investigate the optical bistable behavior for a weakly interacting two-species Bose-
Einstein condensates inside a pumped optical cavity by considering the two possible regimes – the
phase mixed regime and the phase segregated regime. We find that the cavity-pump detuning plays
a significant role in controlling the threshold of the optical bistability and the contrast between the
bistability values depending upon the state we are working in. We also demonstrate the occurrence of
normal mode splitting in the optical spectrum for both the regimes which further showing the position
and amplitude discrepancies in the spectral peaks.
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1. Introduction

Ultracold atomic ensembles confined in a small volume ultrahigh-finesse optical cavity have
always been studied for the past many years from many different points of view. Such system
forms a very nice example of a nonlinear system. When the resonance frequency of the cavity
is far detuned from the atomic resonance, the nonlinearity in the system arises due to the



142 Optical Bistability and Normal-Mode Splitting of Two-Species BE Condensates. . . : Neha Aggarwal et al.

dispersive interaction between the light and the atom. This atom-light interaction imprints a
position-dependent phase shift on the light field which in turn affects the mechanical motion
of the atoms. This highly nonlocal nonlinear interaction is very different from the usual
local interatomic interactions. Many interesting results have been reported by exploiting
this nonlinear interaction such as optical bistability [1], self-organization of atoms [2], cavity-
enhanced super-radiant Rayleigh scattering [3], Bose-Hubbard model [4] and Dicke quantum
phase transition [5]. Furthermore, in recent years, Bose-Einstein condensates (BECs) in
optical resonators and another important field of research i.e., optomechanics were unified
where the collective motion of an atomic ensemble plays the role of movable mirror [6]. In
1980s, optical bistability was extensively studied due to the prospect of its use in all-optical
computers as an optical switch [7]. However, there were limited applications due to the lack
of controllability. Recently, the controlled optical bistability threshold points and width of
bistability hysteresis curve have not only been studied theoretically but have also been observed
experimentally [8,9]. The BEC-cavity system also shows strong matter-wave bistabiltiy [10]
and optical bistability [6,11].

The aim of the present paper is to analyse optical bistability and normal-mode splitting for a
two-species BECs confined within an optical cavity. Since the experimental realization of binary
mixtures of Bose-Einstein condensates (BECs) in 1997 [12], the field of two-component BECs
has always been an intense research topic both experimentally and theoretically. These have
been experimentally achieved using different isotopes of the same atom [13], different atomic
species [14–17], and two hyperfine states of the single isotope [12, 18–23]. Depending upon
the atom-atom interaction strengths G ii (intraspecies interactions) and G i j(i 6= j) (interspecies
interaction), these binary mixtures can be either in a phase mixed state (G2

12 <G11G22) or in
a phase segregated state (G2

12 >G11G22) [24]. The nonlinear interaction can be manipulated
using Feshbach resonances very conveniently [25]. The purpose of the present paper is to
investigate the influence of these atomic interactions on the optical bistability of the pumped
two species BEC-cavity system. We further discuss how cavity-pump detuning plays a vital role
in controlling the threshold points of the bistability depending upon the state the condensates
are in. In addition, we also study the normal mode splitting in the displacement spectrum of
the optical cavity field for both the phase mixed and phase segregated cases.

2. The Model Hamiltonian

We consider a zero-temperature two-species Bose-Einstein condensate system with weak non-
linear interatomic interaction strongly interacting with a quantized single standing wave
cavity mode of frequency ωc , whose schematic representation is shown in Figure 2. The cavity
field is also coupled to external fields incident from one side mirror. In order to reduce the
decoherence, the system can be isolated from the environment by using a high-Q optical cavity.
This also ensures that the cavity light field remains quantum mechanical for the duration of
the experiment. The single cavity mode approximation is justified if the induced resonance
frequency shift of the cavity is much smaller than the longitudinal-mode spacing. The cavity is
coherently driven by a laser field with frequency ωp through the cavity mirror with amplitude
η. The harmonic confinement along the direction perpendicular to the optical lattice is taken to
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be large so that the system effectively reduces to one dimension. In the formalism of the second
quantization, the Hamiltonian of such a system can be written as [26–28]:

H = H0 +Hint +HL , (1)

where

H0 =
∑

i=1,2

∫
d~xψ†

i (~x)
[
−~252

2M
+Vi(~x)+ 4π~2ai

2M
ψ

†
i (~x)ψi(~x)

]
ψi(~x) , (2)

Vi(~x)= cos2(kx)[~U0i â†â+V cl
i ] , (3)

Hint = 4π~2a12

M

∫
d~xψ†

1(~x)ψ†
2(~x)ψ1(~x)ψ2(~x) , (4)

HL =−~∆câ†â− i~η(â− â†) . (5)

Figure 1. (color online) Schematic representation of the system we are investigating here. It involves
the weakly interacting two-species Bose-Einstein condensates inside a Fabry-Perot optical cavity driven
by an external pump laser.

The atomic creation and annihilation field operators of the ith condensate at position ~x are
represented by ψ

†
i (~x) and ψi(~x) respectively, following the relation [ψi(~x),ψ†

j(~x
′)]= δi jδ(~x−~x′).

Last term in H0 is the two body intraspecies interaction Hamiltonian with ai as the intraspecies
s-wave scattering length of ith condensate atom having mass M . The term cos2(kx)~U0i â†â
describes the optical lattice potential experienced by each of the two species inside the cavity
while V cl

i is the classical potential for the two components. Here k denotes the wave vector

of the pump laser field. The parameter U0i = g2
0i

∆ai
is the optical lattice barrier height per

photon for the ith component and it represents the atomic backaction on the field. The single
atom-photon coupling strength is given by g0i for the ith component while ∆ai =ωp −ωai is
the corresponding large atom-pump detuning. Also, Hint depicts the inter-species two body
interaction Hamiltonian where a12 (= a21) is the inter-species scattering length. HL describes
the light field Hamiltonian with ∆c =ωp −ωc representing the cavity-pump detuning and â (â†)
to be the lowering (raising) operator such that [â, â†]= 1.

The corresponding Bose-Hubbard (BH) Hamiltonian can be derived by expanding the
atomic field operators in a basis of localized Wannier functions as ψ1 = ∑

l b̂lW1(~x−~xl) and
ψ2 = ∑

l ĉlW2(~x−~xl), where Wi(~x−~xl) is the Wannier function for the ith component bosonic
atom at the lth site. Also, b̂l and ĉl are the annihilation operators for the 1st and 2nd component
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bosonic atom respectively at the lth site. In the BH model, this substitution is valid for the
lowest Bloch bands of the periodic optical lattice potential. Thus, retaining only the lowest band
along with the nearest-neighbor interaction, the above Hamiltonian given by eqn. (1) becomes:

H = E1
∑
l

b̂†
l b̂l + (~U01â†â+V cl

1 )J1
∑
l

b̂†
l b̂l +

U11

2

∑
l

b̂†
l b̂†

l b̂l b̂l

+ E2
∑
l

ĉ†
l ĉl + (~U02â†â+V cl

2 )J2
∑
l

ĉ†
l ĉl +

U22

2

∑
l

ĉ†
l ĉ†

l ĉl ĉl

+ U12
∑
l

b̂†
l b̂l ĉ

†
l ĉl −~∆câ†â− i~η(â− â†) , (6)

where the coupling matrix elements are:

E i =
∫

d~xWi(~x−~xl)
(−~252

2M

)
Wi(~x−~xl), (7)

Ji =
∫

d~xWi(~x−~xl)cos2(kx)Wi(~x−~xl). (8)

Note that here we have ignored matter wave dynamics for light scattering which is justified
if we consider deep lattice formed by a strong classical potential. Such a situation can easily be
experimentally realized since the time scale of light measurements can be made faster than the
time scale of atomic tunneling. Thus, tunneling can be made very slow by tuning the optical
lattice potential [29]. Hence, tunneling of atoms into the neighbouring wells is neglected in
deriving the above Hamiltonian. Also, Uii and U12 represent the respective two body intra and
inter component interaction which are defined as:

Uii = 4π~2ai

M

∫
d~x|Wi(~x)|4, (9)

U12 = 4π~2a12

M

∫
d~x|W1(~x)|2|W2(~x)|2. (10)

The BH Hamiltonian derived above (given by eqn. (6)) is valid for weak atom-cavity field
nonlinearity only [4]. It gives the following Heisenberg-Langevin equations of motion for the
photon operator â and the bosonic field operators b̂l and ĉl :

˙̂a =−i

{
U01J1

∑
l

b̂†
l b̂l +U02J2

∑
l

ĉ†
l ĉl

}
â+ i∆câ− κ

2
â+η+p

κξ̂p(t), (11)

˙̂bl =−i

{(
U01â†â+ V cl

1

~

)
J1 + E1

~

}
b̂l − i

U11

~
b̂†

l b̂l b̂l − i
U12

~
b̂l ĉ

†
l ĉl , (12)

˙̂cl =−i

{(
U02â†â+ V cl

2

~

)
J2 + E2

~

}
ĉl − i

U22

~
ĉ†

l ĉl ĉl − i
U12

~
ĉl b̂

†
l b̂l , (13)

Journal of Atomic, Molecular, Condensate & Nano Physics, Vol. 6, No. 2, pp. 141–151, 2015



Optical Bistability and Normal-Mode Splitting of Two-Species BE Condensates. . . : Neha Aggarwal et al. 145

G12
2
< G11 G22

G12
2
> G11 G22

-50 0 50
0.0

0.5

1.0

1.5

2.0

2.5

Dc�Κ

a s
2

Figure 2. (color online) Plot of mean intracavity photon number |as|2 of the pumped two-species
BEC-cavity system as a function of dimensionless cavity-pump detuning ∆c/κ for the condensates to
be in the phase segregated regime (G11 = 0.5κ, G22 = 0.75κ, G12 = κ) (solid lines) and phase mixed
regime (G11 = 2.0κ, G22 = 3.0κ, G12 = κ) (dashed lines). The other parameters used are η2/κ2 = 10,
U01 =U02 =−κ, J1 = J2 = 1, I = 50, E′

1 = E′
2 = 0 and V cl′

1 =V cl′
2 =−0.1κ.

where κ characterizes the dissipation of the optical field. Also, ξ̂p(t) is the input noise operator
satisfying 〈ξ̂p(t) = 0〉, 〈ξ̂†

p(t′)ξ̂p(t)〉 = npδ(t′ − t) and 〈ξ̂p(t′)ξ̂†
p(t)〉 = (np + 1)δ(t′ − t) with np

representing the equilibrium occupation number for the optical oscillator. The total number
operator is given as N̂ =∑

l(b̂
†
l b̂l + ĉ†

l ĉl)= N̂b + N̂c . Since we are ignoring tunneling dynamics,
we drop the site index l from the atomic operators. Further note that the steady state values
of the photonic operator and the atomic operators, denoted by as , bs and cs respectively (the
subscript s denotes the steady-state value), can be obtained by setting the time derivatives of â,
b̂ and ĉ to zero. Thus, the resulting steady state values become:

|as|2 = η2

κ2

4 +{
∆c−U01J1I|bs|2−U02J2I|cs|2

}2 , (14)

|bs|2 = 1
(G2

12−G11G22)

[
(U01J1G22−U02J2G12)|as|2+(V cl′

1 J1+E′
1)G22−(V cl′

2 J2+E′
2)G12

]
, (15)

|cs|2 = 1
(G2

12−G11G22)

[
(U02J2G11−U01J1G12)|as|2+(V cl′

2 J2+E′
2)G11−(V cl′

1 J1+E′
1)G12

]
, (16)

where G11 = U11/~, G22 = U22/~, G12 = U12/~, V cl′
1 = V cl

1 /~, V cl′
2 = V cl

2 /~, E′
1 = E1/~ and

E′
2 = E2/~. After substituting |bs|2 and |cs|2 into the eqn. (14), we obtain a cubic equation

in |as|2(= A) as:

A3δ2 − (2∆′
cδ)A2 +

(
κ2

4
+∆′2

c

)
A−η2 = 0, (17)

where

∆′
c =∆c −U01J1I

[
(V cl′

1 J1 +E′
1)G22 − (V cl′

2 J2 +E′
2)G12

]
(G2

12 −G11G22)

−U02J2I

[
(V cl′

2 J2 +E′
2)G11 − (V cl′

1 J1 +E′
1)G12

]
(G2

12 −G11G22)
, (18)
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δ=U01J1I
[(U01J1G22 −U02J2G12)]

(G2
12 −G11G22)

+U02J2I
[(U02J2G11 −U01J1G12)]

(G2
12 −G11G22)

, (19)

with I representing the total number of lattice sites. A plot of this algebraic equation of third
order in A as a function of dimensionless cavity-pump detuning (∆c/κ) is shown in Figure 2 for
two different conditions. When the condition G2

12 >G11G22 is satisfied, then, the condensates
are said to be in the phase segregated state (solid lines). However, in the opposite limit i.e., when
the condition G2

12 <G11G22 is satisfied, the condensates are said to be in a mixed state (dashed
lines) [24]. Note that we will always work either in the deep phase mixed regime or in the deep
phase segregated regime since the dynamics could be very complex at the boundary separating
the two regimes [30]. Clearly, Figure 2 displays a bistable behavior. For a sufficiently large value
of pump parameter η, we obtain three possible steady-state solutions for the mean intracavity
photon number, with two of them being stable and one unstable [6]. In both the cases, system
follows the steady-state branch until reaching the lower turning point, where non-steady-state
dynamics gets excited. Here, we observe that this bistable response is very sensitive to the state
we are working with. The threshold point of optical bistability in the case of phase segregated
state appears at a smaller value of detuning as compared to the case of the phase mixed state.
Therefore, we need to choose the appropriate value of cavity-pump detuning depending on
the regime we are working with. Thus, cavity-pump detuning plays a very significant role in
controlling the bistability in the system. Further note that the contrast between the highest
and the lowest stable steady-state values gets decreased for the condensates in the phase
segregated regime. So, the optical bistability threshold point in the phase segregated state can
be achieved at a lower detuning at the cost of lower contrast between the highest and lowest
stable mean-field solutions. Hence, both the threshold point and contrast between the bistability
values can be controlled depending upon our interest of working in either of the regimes. Now,
in the next section, we study the dynamics of fluctuations of the system around the steady state
values in both the phase mixed and phase segregated regimes.

3. Fluctuation Dynamics: Normal-Mode Splitting

In this section, we show that the coupling of the cavity field fluctuations and the fluctuations of
the two condensate components leads to the splitting of normal mode into three modes, known
as normal-mode splitting (NMS). This NMS involves driving three parametrically coupled non-
degenerate modes out of equilibrium. The aim would be to study the influence of phase mixing
and phase segregation on NMS. To this end, we linearize eqns. (11)-(13) around the steady-
state values by writing operators as the sum of averages plus fluctuations (i.e., â → as + â,

b̂ → p
nbs + b̂ and ĉ → p

ncs + ĉ with
p

nbs =
√

Nb
I and

p
ncs =

√
Nc
I ) in order to obtain the

following Heisenberg-Langevin equations of motion:

˙̂a =
[
i∆d −

κ

2

]
â− iŪ01I(b̂+ b̂†)− iŪ02I(ĉ+ ĉ†)+p

κξ̂p(t), (20)

˙̂b =−iνb b̂− iŪ11b̂† − iŪ12(ĉ+ ĉ†)− iŪ01(â+ â†), (21)

˙̂c =−iνc ĉ− iŪ22 ĉ† − iŪ12(b̂+ b̂†)− iŪ02(â+ â†). (22)
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Here, νb = U01J1|as|2 +V cl′
1 J1 + E′

1 + 2G11nbs +G12ncs , Ū11 = G11nbs , Ū12 = G12
p

nbs
p

ncs ,
Ū01 = U01J1|as|pnbs , νc = U02J2|as|2 +V cl′

2 J2 +E′
2 + 2G22ncs +G12nbs , Ū22 = G22ncs , Ū02 =

U02J2|as|pncs and ∆d = ∆c −U01J1Inbs −U02J2Incs . The atomic losses due to heating are
neglected. Now, we rewrite the above equations of motion in terms of amplitude and phase
quadratures for the system with Xa = â+â† , Xb = b̂+ b̂† , X c = ĉ+ ĉ† , Pa = i(â†−â), Pb = i(b̂†− b̂),
Pc = i(ĉ† − ĉ), X in

a (t)= (ξ̂p(t)+ ξ̂†
p(t)) and P in

a (t)= i(ξ̂†
p(t)− ξ̂p(t)) as:

Ẋa =−κ
2

Xa −∆dPa +
p
κX in

a (t), (23)

Ṗa =−κ
2

Pa +∆d Xa −2Ū01IXb −2Ū02IX c +
p
κP in

a (t), (24)

Ẋb = (νb −Ū11)Pb, (25)

Ṗb =−(νb +Ū11))Xb −2Ū12X c −2Ū01Xa, (26)

Ẋ c = (νc −Ū22)Pc, (27)

Ṗc =−(νc +Ū22)X c −2Ū12Xb −2Ū02Xa. (28)
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Figure 3. (color online) (a) Plot of the output cavity spectrum SXa (ω) as a function of normalized
frequency ω/κ for the condensates to be in the phase segregated regime (G11 = 0.8κ, G22 = 0.75κ,
G12 = κ) (solid line) and phase mixed regime (G11 = 1.05κ, G22 = 1.15κ, G12 = κ) (dashed line). (b) same
plot as (a) but including higher ordinate as well. The other parameters used are U01 = 1.2κ, U02 = 0.2κ,
J1 = J2 = 1, I = 20, E′

1 = E′
2 = 0, V cl′

1 =−0.3κ, V cl′
2 =−0.5κ, ∆c =−κ and nbs = ncs = 0.5.

Note that the system reaches a steady state only if it is stable. Therefore, the stability
conditions given in Appendix A is always satisfied here for the system to be in the stable regime.
Furthermore, the output cavity spectrum in the Fourier space for np = 0 can be evaluated from:

SXa(ω)= 1
4π

∫
dω′e−i(ω+ω′)t〈Xa(ω)Xa(ω′)+ Xa(ω′)Xa(ω)〉, (29)

using the correlations given in Appendix B and is found to be:

SXa(ω)=
κ∆2

1

[
∆2

d + κ2

4 +ω2
]

[{
∆1

(
κ2

4 −ω2
)2 +∆2∆d

}2
+ω2κ2∆2

1

] , (30)
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where

∆1 = (ω2 −ν2
b +Ū2

11)(ω2 −ν2
c +Ū2

22)−4Ū2
12(νb −Ū11)(νc −Ū22), (31)

∆2 =∆d∆1 −16IŪ01Ū02Ū12(νb −Ū11)(νc −Ū22)−4Ū2
01I(νb −Ū11)(ω2 −ν2

c +Ū2
22)

−4Ū2
02I(νc −Ū22)(ω2 −ν2

b +Ū2
11). (32)

The optical spectrum is driven by the quantum fluctuations of the condensates. As before, we
are interested either in the deep phase mixed state or in the deep phase segregated state.
Figure 3(a) shows the plot of displacement spectrum SXa(ω) versus normalized frequency (ω/κ)
for the condensates to be in the phase segregated regime G2

12 >G11G22 (solid line) and phase
mixed regime G2

12 <G11G22 (dashed line). Here, we demonstrate the splitting of normal mode
into three modes for both the cases, which is clearly indicated by the presence of three distinct
peaks in the optical spectra. The NMS is basically associated with the mixing between the
fluctuations of cavity field mode around the steady state and the fluctuations of two component
condensates (Bogoliubov modes) around the mean field. Therefore, the presence of three peaks
in the spectra indicates a coherent energy exchange between the optical mode and the two
Bogoliubov modes. Note that the energy exchange between these modes should take place on
a time scale faster than the decoherence of each of the modes, otherwise NMS would not be
observed. Furthermore, an important point to note from Figure 3(a) is the shifting of peaks
towards higher frequencies as we move from segregated to mixed state. Also, from figure 3(b)
(which depicts the same plot of Figure 3(a) but including higher ordinate as well), amplitude
discrepancies are also observed. In phase mixed case, amplitude of all the three peaks are found
to be comparatively smaller than the phase segregated case. Thus, along with the observation
of NMS in both the spectra, discrepancies in the position and amplitude of the peaks are also
clearly demonstrated in both the cases.

Further note that the parameters considered here are in the range of experimental
capabilities. A high-finesse optical cavity consisiting of a cloud of BEC may have the intracavity
decay rate varying from 2π×8.75kHz [31], to 2π×0.66MHz [32] or 2π×1.3MHz [6]. Thus, the
value of pump amplitude η chosen here for optical bistability is experimentally reachable [6,33].
The other parameters taken in the units of cavity damping rate are also within the experimental
reach [34]. Further, the values for the intraspecies and interspecies interaction between the
condensate atoms are chosen in such a way that the conditions for the condensates to be either
in the phase mixed state or in the phase segregated state are satisfied [30].

4. Conclusion

To summarize, we have theoretically demonstrated the possibility of observing optical bistability
and normal mode splitting for a weakly interacting two-species Bose-Einstein condensates
confined within an optical cavity for two different regimes – the phase mixed regime and
the phase segregated regime. We found that the optical bistability threshold point and the
contrast between the bistability values are very sensitive to the state we are working with. In
particular, the threshold point in the phase segregated state can be achieved at a lower value
of cavity-pump detuning at the cost of lower contrast between the bistability values. Thus, an
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appropriate value of cavity-pump detuning is to be chosen depending upon our interest of the
state to work in. Such system may be useful in making photonic switching devices. Furthermore,
in the optical spectrum, along with the normal mode splitting into three modes (optical mode
and two Bogoliubov modes), discrepancies in the amplitude position and peaks have also been
clearly observed in both the regimes. In the phase mixed state, smaller amplitude peaks shifting
towards larger frequencies have been accounted comparative to the phase segregated case.

Appendix A

The two non-trivial stability conditions for the system, attained by applying the Routh-Hurwitz
criterion [35,36], are given as:

S1 = a0 > 0, (A.1)

S2 = (a5a4a3 +a6a1a5 −a6a2
3 −a2a2

5)> 0, (A.2)

where

a0 = κ2

4
[
ν2

bν
2
c −ν2

bŪ2
22 −ν2

cŪ
2
11 +Ū2

11Ū2
22 −4Ū2

12(νbνc −νbŪ22 −νcŪ11 +Ū11Ū22)
]

+ (νb −Ū11)(4I∆dŪ2
01ν

2
c −4I∆dŪ2

01Ū2
22)+4I∆dŪ2

02(ν2
b −Ū2

11)(νc −Ū22)

+∆2
d[Ū2

11Ū2
22 −4Ū11Ū22Ū2

12 +4Ū22νbŪ2
12 −Ū2

22ν
2
b +4Ū11νcŪ2

12 −4νbνcŪ2
12 −Ū2

11ν
2
c +ν2

bν
2
c]

−16Ū01Ū02Ū12I∆d(νcνb −νcŪ11 −νbŪ22 +Ū11Ū22), (A.3)

a1 = κ
[
ν2

bν
2
c −ν2

bŪ2
22 −ν2

cŪ
2
11 +Ū2

11Ū2
22 −4Ū2

12(νbνc −νbŪ22 −νcŪ11 +Ū11Ū22)
]
, (A.4)

a2 = κ2

4
[ν2

b +ν2
c −Ū2

11 −Ū2
22]+ν2

bν
2
c −ν2

bŪ2
22 −ν2

cŪ
2
11 +Ū2

11Ū2
22

−4Ū2
12[νbνc −νbŪ22 −νcŪ11 +Ū11Ū22]+4I∆dŪ2

01(νb −Ū11)+4I∆dŪ2
02(νc −Ū22)

+∆2
d[ν2

b +ν2
c −Ū2

11 −Ū2
22], (A.5)

a3 = κ[ν2
b +ν2

c −Ū2
11 −Ū2

22], (A.6)

a4 = κ2

4
+∆2

d −Ū2
11 −Ū2

22 +ν2
b +ν2

c , (A.7)

a5 = κ, (A.8)

a6 = 1. (A.9)

Appendix B

The amplitude and phase quadratures of the input noise operator in the Fourier space satisfy
the following correlation functions [37]:

〈X in
a (ω)X in

a (ω′)〉 = 〈P in
a (ω)P in

a (ω′)〉 = 2πδ(ω+ω′), (B.1)
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〈X in
a (ω)P in

a (ω′)〉 = 2iπδ(ω+ω′), (B.2)

〈P in
a (ω)X in

a (ω′)〉 =−2iπδ(ω+ω′). (B.3)
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