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Abstract. Ultra cold atomic condensate with long range interaction is considered as a possible

candidate to realize the supersolid phase. Such a supersolid phase can be subjected to artificial gauge

field created either through rotation or by introducing space dependent coupling among hyperfine

states of the atoms using Raman lasers. We study the effect of an artificial gauge field on the

Supersolid phase in ultracold atomic condensates with long range interactions. Using Mean field

approach, we demonstrate the structural differences between vortex in a supersolid and superfluid.

We determine analytically the effect of the artificial gauge field on the density wave - supersolid

(DW-SS) and the Mott insulator-superfluid (MI-SF) transition boundary. We also point out that

in symmetric gauge the momentum distribution structure at these transition boundaries bears

distinctive signatures of vortices in supersolid and superfluid phases. We point out that these results

can clearly identify such a ultra cold atomic supersolid phase.
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1. Introduction
Bose Einstein Condensate in gases with long range interactions are nowadays experimentally

realizable in many systems. Some of the possible candidates are dipolar Cr52 gases [1],

condensates with rydberg atoms [2] and with heteronuclear molecules [3]. These ultracold

atomic systems provide new possibilities to explore quantum phases which arise due to the

long range nature of interactions between the atoms. The effect of long-range interactions can
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be minimally taken care of by considering the nearest neighbor interaction (NNI) in addition

to onsite interactions to the Bose-Hubbard (BH) model [4]. Studying such condensates with

long range interactions in deep optical lattices gives us a way to observe additional new phases

such as Density wave (DW) and Supersolid (SS) phase in addition to Superfluid (SF) and Mott

Insulator (MI) phases [5]. Of particular interest is the Supersolid phase, where the superfluid

and crystalline orders co-exist i.e. this phase would achieve a coherent state that could allow

matter to flow through the crystal. In recent experiments by Kim and Chan [6] on solid He4,

there are signatures of the Supersolid phase in the system, but there are some debates on the

interpretation of Supersolid phase in solid He4 [7], so its existence is still questionable.

The Ultracold atomic systems loaded in an optical lattice can act as very promising

candidates to confirm the existence of Supersolid phase and to explore the properties of this

phase. In particular, the effect of artificial gauge field [8, 9] on the supersolid phase can

give remarkable distinctive features as compared to superfluid phase and hence, the vortex

structures in supersolid phases can act as signatures for detection of such phases. Within this

general idea in mind, we have done the study of effect of artificial gauge field on the supersolid

phase observed in the cold atomic quantum gases. We have studied the effect of gauge field

on Supersolid phase [10] under a variational mean field approximation using Gutzwiller wave

function by analytical means. In this work, the supersolid phase near the phase boundary,

is shown to possess checkerboard vortex like structures which possesses density modulations

in the superfluid order parameter. This study shows the structural differences in the vortex

structures in supersolid and superfluid phase. It also shows the increase of the phase boundary

of the insulating phases (DW and MI) as a function of increasing magnetic flux. The main

results of this work and the formalism is given in Section 3.

In subsequent Section 4, we used the Strong Coupling Perturbation theory to calculate

momentum distribution which is an experimentally relevant quantity, in presence of artificial

gauge field. This technique is found to be quite accurate as it takes into account higher order

corrections and dependence on the dimension of the system. We have analytically calculated

the experimental signatures i.e. the momentum distribution of checkerboard vortex structures

in Supersolid phase. This technique was able to produce more accurate phase diagram of the

system in presence of gauge field, showing clearly the existence of various phases and the effect

of gauge field on the transition boundaries of such phases. Most importantly, we were able

to calculate the momentum distribution of the different phases, which is an experimentally

relevant quantity and showed the distinct signatures of the vortex structures in a Supersolid

as compared to vortex in a Superfluid.

2. Theoretical Framework

We consider cold atoms placed in a square optical lattice in two spatial dimensions, which

is rotated in the plane about the z axis. The corresponding tight binding Hamiltonian in the

corotating frame for cold atoms with on-site interaction and nearest neighbor interaction is
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given by

H =−
∑

i, j

t i j b̂
†

i
b̂ j +

1

2

∑

i

n̂ i(n̂ i −1)−µ
∑

i

n̂ i +V
∑

i, j

n̂ i n̂ j . (1)

Here, the first term in above eq. (1) is the hopping term where the hopping matrix elements

are non zero only for nearest neighbours and is given by t i j = teiφi j with φi j =
∫r i

r j
dr ·A(r) and

A(r) is the vector potential corresponding to the artificial gauge field. Also, b̂
†
i
, b̂ i and n̂ i are

the boson creation, annhilation and number operators respectively. V is the strength of nearest

neighbour interaction that captures the effect of nearest neighbor interaction, µ is the chemical

potential. We have rescaled the Hamiltonian by U and thus, all parameters are measured in

units of U . It is to note that we neglect the effect of an overall trap potential assuming that it

is sufficiently shallow and is neutralized by the effect of centrifugal force particularly at the

central region of the condensate.

For both the mean field and strong coupling calculations in the subsequent sections, we

are interested in the limit V d < 1/2, with d as the dimension. In this particular limit, the DW

phase has the particle number distribution such that the adjacent lattice sites have n0 and

n0 −1 particles, and thus along the t = 0 axis, the system forms alternative sequence of n0 −
1
2

DW phases followed by n0 MI phase.

It is very important to note that the actual physical interaction here is due to some

sort of laser atom interaction which gives rise to an artificial gauge potential and not the

artificial gauge field. And the system thus, does not show the true gauge invariance, and

the fundamental quantities may not be necessarily gauge invariant. It can be seen from the

momentum distribution results obtained in Section 4.2. This point has also been explained and

emphasized in our work [11].

3. Mean Field Calculations

In this section, we use the variational mean field approach to carry out the minimization of

the Hamiltonian (1) using the Gutzwiller wave function |Ψ〉 =
∏

i

∑

n f i
n|n〉. Here, f i

n are the

variational parameters which are amplitudes for the fock state |n〉 with N particles at site

i. We determine the effect of artificial gauge field on the phase boundary of the DW phase

and MI phase analytically by performing the energy minimization of eq. (1) using a reduced-

basis variational ansatz for the Gutzwiller wave function near the phase boundary. For the

DW phase, we can split the wave function as the product wave function for sublattice A and

B, with n0 and n0 −1 particles on each site, as |Ψ〉 = |ΨA〉|ΨB〉. Here, |ΨA〉 =
∏

iA

∑

nA
f

iA
nA

|nA〉

and |ΨB〉 =
∏

iB

∑

nB
f

iB
nB

|nB〉, with f
iA
nA

= δnA ,n0
and f

iB
nB

= δnB ,n0−1. The minimization of the

energy involves the expansion of the variational parameters in terms of the superfluid order

parameters φ̃
iA

A
and φ̃

iB

B
of the two sublattices and neglecting the higher order corrections. The

reader is advised to look at [10] for more explicit details of the calculation.

Minimization of the energy functional gives us the equations for the superfluid order
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parameter, which can be written down as a spinorial Harper equation

∑

〈iA ,iB〉

(n̂ ·σ)
[

φ̃
iA

A
φ̃

iB

B

]T
=

1

t̃

[

φ̃
iA

A
φ̃

iB

B

]T
. (2)

Its solution can be written as φ̃(x, y)⊗
[

exp
(

− i
ϕiA iB

2

)

exp
(

i
ϕiA iB

2

)]T
where φ̃(x, y) satisfies the

following symmetric gauge Harper equation (3)

φ̃(x+1, y)eiπνy
+ φ̃(x−1, y)e−iπνy

+ φ̃(x, y+1)e−iπνx
+ φ̃(x, y−1)eiπνx

=
1

t̃
φ̃(x, y) . (3)

1
t̃

in the right hand side of the eq. (3) can be mapped on the eigenvalues ε of Hofstadter butterfly

spectrum plotted in Figure 1(a).

Here, we briefly mention the results obtained using the mean field formalism at the phase

boundaries of the MI and DW phases. The edge of the Hofstadter butterfly spectrum (marked

by black in color) gives the highest eigen value of the eq. (2) as a function of magnetic flux ν,

which in turn is related to the minimum value of the hopping parameter t. This observation

holds for the case of MI phase boundary too, by substituting nA = nB = n0 in the calculations

done for DW phase. It is found that the phase boundary of the DW and MI phase extends as

a function of increasing strength of the gauge field. The reason behind this is the stronger

localization of the bosonic states by the increasing strength of the artificial gauge field. It is

shown in Figure 1(b), alongside the Hofstadter butterfly spectrum Figure 1(a).
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Figure 1. (a) Hofastadter butterfly spectrum, plotting the energy eigen values of Harper equation

as a function of increasing magnetic flux. The highest eigen value marked black in color, gives the

corresponding minimum values for the hopping parameter t. (b) Phase diagram of extended bose

hubbard model under the effect of increasing magnetic flux, using mean field results.

Within our mean field analysis, we can also calculate the superfluid order parameter of

the excitations at the boundary of both MI and DW phase. The order parameter near the DW

phase for a given value of flux is found to be structurally very different from that of near

the MI phase for same value of magnetic flux. This is because of the existence of supersolid

phase near the DW phase in the phase diagram as compared to the SF phase near the MI
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phase. It directly implies that the excitations in the supersolid phase are very different as

compared to usual superfluid, and this is one of the main outcome of this mean field analysis.

This has been demonstrated in Figure 2. This order parameter profile corresponds to the vortex

structure in a supersolid phase and we can see that it indeed has structural differences than

a vortex in a superfluid, shown in Figure 2 and hence, it can act as a signature for detection of

supersolid phase in the system. Experimental techniques [12, 13] nowadays are able to detect

such differences in sublattice modulated density and hence, can provide a robust signature for

vortex in a supersolid.

Figure 2. Structural difference between vortex in a supersolid and vortex in a superfluid.

4. Strong Coupling Perturbation Calculations
The strong-coupling perturbation expansion, used here to study the extended Bose Hubbard

Model in presence of artificial gauge field, treats hopping parameter as a perturbation [14, 15],

and it is found that the results from such an approach matches very well with results from

quantum Monte Carlo simulations [16]. In this section, we describe the strong coupling

perturbation formalism to determine the phase boundaries for the insulating phases (both

DW and MI) and the momentum distribution of the phases at the boundaries in presence of

an artificial gauge field. Within this formalism, we calculate the ground state energies and

wave functions of the DW phase EDW (nA, nB) with nA and nB bosons on alternating lattice

sites and MI phase EMI(n0) with n0 bosons on each lattice site, as a perturbative expansion

in the hopping parameter t. We also calculate the energies of the DW and the MI states

with an extra particle or hole, E
par

DW
(nA, nB), Ehol

DW
(nA, nB) and E

par

MI
(n0), Ehol

MI
(n0), using the

perturbative expansion. It is to note that the energy of the DW and MI excitations (state with

extra particle or hole) requires the use of degenerate perturbation theory, whereas the ground

state of pure DW and MI state uses the non-degenerate perturbation theory. The unperturbed

system corresponds to the case (t = 0).
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4.1 Determination of phase boundaries of the insulating phases
The phase boundary between the DW phase and the SS phase is determined by

EDW (nA, nB)= E
par/hol

DW
(nA, nB) . (4)

Similarly, the phase boundary between the MI phase and the SF phase is determined as :

EMI(n0)= E
par/hol

MI
(n0) . (5)

Using the strong coupling perturbative expansion, one then obtains respective expressions for

the energies of different insulating phases and the particle-hole excitations energies, and using

eqs. (4) and (5), one then determines the chemical potential as a series expansion in powers of

t. This gives us the corresponding µ values for different values of t and hence, one can trace

the entire phase boundary of the insulating phases.

It is to note that in these calculations too, ǫ which is the minimum eigen value of the

Hofstadter butterfly spectrum, enters in the series expansion and plays a major role in

determining the effect of magnetic field on the phase boundary. The determination of the

minimum eigenvalue ǫ involves the diagonalization of the hopping matrix, where the hopping

matrix is dependent on the choice of the gauge potential. Thus, the location of the minimal

eigenvalue ǫ depends on the choice of gauge potential, while the eigenvalue itself does not. For

further details of the calculations, the reader is advised to look [11]. In above calculations, the

DW state in the limit V d < 1/2 can be obtained by putting nA = n0 and nB = n0 −1 in above

equations. The energies for the corresponding MI phase with n0 particles at each lattice site

can be obtained by carrying out a similar calculations. Please note that we are not providing

here the complete calculations, and for details please refer to [11].

Figure 3 below shows the phase diagram of the extended bose hubbard model under the

effect of increasing gauge field, using strong coupling expansion. This is obtained after doing a

chemical potential extrapolation on the phase boundaries obtained by third order perturbative

calculations [11]. This is because the accuracy of our calculations is restricted due to expansion

up to finite order and hence, we use extrapolation technique to get more accurate results.

Figure 3 also shows the increasing stability of the insulating phase (the DW and MI phases

grow in size as the strength of the magnetic field is increased from zero to finite values), which

is in agreement to the mean field results obtained [10]. The reason is again due to the localizing

effect of magnetic field on the moving bosons, which favors the insulating phases to occupy a

larger area in the phase diagram.

4.2 Momentum Distribution calculations
Experimental systems use the Time of flight absorption imaging of the freely expanding atoms

to probe the properties of the cold atomic condensate with and without optical lattice. In such

measurements, the quantity that is measured is the momentum distribution of the ultracold

atomic systems. Here, we calculate the momentum distribution of such cold atomic condensates

in presence of artificial gauge field within the framework of the strong-coupling expansion. We

show that, in the presence of an artificial magnetic field, the momentum distribution actually
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Figure 3. Phase diagram for the extended bose hubbard model, under the effect of increasing strength

of magnetic flux with V d = 0.2. The increasing area of the insulating lobes as a function of magnetic

flux is due to the localizing effect of magnetic field on moving bosons.

depends on the means to produce such an effective magnetic field. The momentum distribution

n(k) is defined as

n(k)=

∫

dr

∫

dr′ρ(r,r′)eik·(r−r′) . (6)

It is the fourier transform of the one-body density matrix ρ(r,r′)= 〈ψ†(r)ψ(r′)〉, with ψ†(r) and

ψ(r) as the bosonic field operators. The strong coupling perturbation theory is used to calculate

the corresponding wave function as a power series in the scaled hopping amplitude t. Using

the wave function expansion of the DW and MI phases, we get the following expressions for

the momentum distribution

nDW (k)=
(nA +nB

2

)

+

[

nB(nA +1)

E1

+
nA(nB +1)

E2

]

ǫ(k)

+

[

nB(nA +1)

2E2
1

+
nA(nB +1)

2E2
2

−
nB(nA +1)

E1

−
nA(nB +1)

E2

]

× (nB +nA +1)(ǫ2(k)−2dt2)+O(t3), (7)

where

E1 = (nB −nA −1)+ (znA − znB +1)V ,

E2 = (nA −nB −1)+ (znB − znA +1)V .

and

nMott(k)= n0−
2n0(n0 +1)

1−V
ǫ(k)+n0(n0+1)(2n0+1)(ǫ2(k)−2dt2)

3−2V

(1−V )2
+O(t3) (8)
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with the dispersion ǫ(k) as the minimum eigenvalue of the flux-dependent hopping matrix T

or t i j multiplied by a prefactor 2/M for the DW phase and 1/M for the MI phase, where M is

the total number of lattice sites.

The artificial gauge field has distinctive effect on the MI-SF and DW-SS transition boundary

and it is shown by plotting the momentum distribution derived in eqs. (7) and (8) in the kx-

k y plane at these transition boundaries. It is because of the dependence of the matrix T on

the gauge potential, that the momentum distribution reflects the gauge potential structure.

Figure 4 below shows the momentum distribution profile for the DW and MI phase at the phase

boundary for landau gauge and symmetric gauge potential. One can see that the momentum

distribution has an apparent gauge dependence on the specific type of the vector potential

and not the field, in the typical experimental setups. This is one of the major observation

of our work. Figure 4 also shows the distinctive features for a rotating supersolid near the

DW phase boundary and a rotating superfluid near the MI phase, by appearance of extra

peaks at the corners of reduced Brillouin zone at the DW phase boundary as compared to MI

phase boundary. This is apparent for both choices of gauge potential i.e. landau gauge and

symmetric gauge potential. The small peaks happen to occur in the momentum distribution of

DW even in the absence of a magnetic field, because of the presence of sub lattice structure of

DW phase which results in reduced periodicity. On applying artificial gauge field, we observe

small peaks in the DW momentum distribution at corners of the Brillouin zone, which is again

attributed to the reduced periodicity of the DW phase compared to the MI phase. As mentioned

before, momentum distribution can be measured using the Time of flight absorption imaging

technique, this provides a way to experimentally distinguish between the supersolid phase and

the superfluid phase by comparing the respective vortex profile.

Figure 4. Momentum distribution at the phase boundary for MI phase, and DW phase in the reduced

Brillouin zone corresponding to Landau gauge potential (left) and symmetric gauge potential (right).

5. Conclusion
To conclude, we have determined the modification of the DW-SS and MI-SF phase boundary for

extended Bose Hubbard Model under the effect of an artificial gauge field using two approaches,

mean field and strong coupling perturbation formalism. Within the mean field theory, we

showed that the modification of phase boundaries of an EBH model due to an artificial
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magnetic field can be derived from the highest eigen value edge spectrum of a spinorial Harper

equation. We have also been able to calculate the vortex profiles for a supersolid phase and

shown how it is structurally different from that of a superfluid. Further, using the strong

coupling perturbation approach we have calculated the momentum distribution at the phase

boundary of the insulating phases, which can be realized experimentally using TOF imaging.

The momentum distribution is shown to reflect the symmetry of the gauge potential, and it

also shows the distinctive features at the DW-SS phase boundary as compared with the MI-SF

phase boundary. We hope that our calculation will stimulate further studies on the properties

and behaviour of the SS phase under the effect of an artificial gauge field.
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